scispace - formally typeset
Search or ask a question
Author

James E. McMurtrey

Bio: James E. McMurtrey is an academic researcher from Agricultural Research Service. The author has contributed to research in topics: Crop residue & Laser-induced fluorescence. The author has an hindex of 33, co-authored 81 publications receiving 6429 citations. Previous affiliations of James E. McMurtrey include United States Department of Agriculture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a wide range of leaf chlorophyll levels were established in field-grown corn (Zea mays L.) with the application of 8 N levels: 0, 12.5%, 25, 50, 75, 100, 125, and 150% of the recommended rate.

1,861 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm utilizing reflectance spectra bands in the photosynthetically active radiation (PAR) region of the solar spectrum was developed for the remote estimation of the concentrations of chlorophyll a, chlorophyck b, and carotenoids in soybeans.

747 citations

Journal ArticleDOI
TL;DR: Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model indicate an interaction among TGI, leaf area index (LAI) and soil type at low crop LAI, whereas at high LAI and canopy closure, TGI was only affected by leaf chlorophyll content.

412 citations

Journal ArticleDOI
TL;DR: In this article, a model aircraft was used to acquire high-resolution digital images of corn, alfalfa, and soybeans from a consumer-oriented digital camera, where colored tarpaulins were used to calibrate the images and a Normalized Green-Red Difference Index (NGRDI) was used.
Abstract: Remote sensing is a key technology for precision agriculture to assess actual crop conditions. Commercial, high-spatial-resolution imagery from aircraft and satellites are expensive so the costs may outweigh the benefits of the information. Hobbyists have been acquiring aerial photography from radio-controlled model aircraft; we evaluated these very-low-cost, very high-resolution digital photography for use in estimating nutrient status of corn and crop biomass of corn, alfalfa, and soybeans. Based on conclusions from previous work, we optimized an aerobatic model aircraft for acquiring pictures using a consumer-oriented digital camera. Colored tarpaulins were used to calibrate the images; there were large differences in digital number (DN) for the same reflectance because of differences in the exposure settings selected by the digital camera. To account for differences in exposure a Normalized Green–Red Difference Index [(NGRDI = (Green DN − Red DN)/(Green DN + Red DN)] was used; this index was linearly related to the normalized difference of the green and red reflectances, respectively. For soybeans, alfalfa and corn, dry biomass from zero to 120 g m−2 was linearly correlated to NGRDI, but for biomass greater than 150 g m−2 in corn and soybean, NGRDI did not increase further. In a fertilization experiment with corn, NGRDI did not show differences in nitrogen status, even though areas of low nitrogen status were clearly visible on late-season digital photographs. Simulations from the SAIL (Scattering of Arbitrarily Inclined Leaves) canopy radiative transfer model verified that NGRDI would be sensitive to biomass before canopy closure and that variations in leaf chlorophyll concentration would not be detectable. There are many advantages of model aircraft platforms for precision agriculture; currently, the imagery is best visually interpreted. Automated analysis of within-field variability requires more work on sensors that can be used with model aircraft platforms.

412 citations

Journal ArticleDOI
TL;DR: In this article, the spectral data collected on 21 dates over the growing season with a hand-held radiometer were quantitatively correlated with total dry-matter accumulation in winter wheat.

356 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the relationship between various linear combinations of red and photographic infrared radiances and vegetation parameters is investigated, showing that red-IR combinations to be more significant than green-red combinations.

8,537 citations

Journal ArticleDOI
TL;DR: Developing spectral indices for prediction of leaf pigment content that are relatively insensitive to species and leaf structure variation and thus could be applied in larger scale remote-sensing studies without extensive calibration are developed.

2,660 citations

ReportDOI
15 Dec 2005
TL;DR: The U.S. Department of Energy and the United States Department of Agriculture have both strongly committed to expanding the role of biomass as an energy source as mentioned in this paper, and they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries making a variety of fuels, chemicals, and other products.
Abstract: The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

2,637 citations

Journal ArticleDOI
06 May 2010
TL;DR: The Soil Moisture Active Passive mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey to make global measurements of the soil moisture present at the Earth's land surface.
Abstract: The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers Soil moisture measurements are also directly applicable to flood assessment and drought monitoring SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon SMAP is scheduled for launch in the 2014-2015 time frame

2,474 citations

Journal ArticleDOI
TL;DR: In this paper, a two-stream approximation model of radiative transfer was used to calculate values of hemispheric canopy reflectance in the visible and near-infrared wavelength intervals.
Abstract: A two-stream approximation model of radiative transfer is used to calculate values of hemispheric canopy reflectance in the visible and near-infrared wavelength intervals. Simple leaf models of photosynthesis and stomatal resistance are integrated over leaf orientation and canopy depth to obtain estimates of canopy photosynthesis and bulk stomatal or canopy resistance. The ratio of near-infrared and visible reflectances is predicted to be a near linear indicator of minimum canopy resistance and photosynthetic capacity but a poor predictor of leaf area index or biomass.

2,198 citations