scispace - formally typeset
Search or ask a question
Author

James E. Pitkow

Bio: James E. Pitkow is an academic researcher from Xerox. The author has contributed to research in topics: Population & Web navigation. The author has an hindex of 46, co-authored 75 publications receiving 10682 citations. Previous affiliations of James E. Pitkow include Google & Georgia Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
30 Apr 1995
TL;DR: A study conducted at Georgia Institute of Technology that captured client-side user events of NCSA's XMosaic supplemented the understanding of user navigation strategies as well as provided real interface usage data.
Abstract: This paper presents the results of a study conducted at Georgia Institute of Technology that captured client-side user events of NCSA's XMosaic. Actual user behavior, as determined from client-side log file analysis, supplemented our understanding of user navigation strategies as well as provided real interface usage data. Log file analysis also yielded design and usability suggestions for WWW pages, sites and browsers. The methodology of the study and findings are discussed along with future research directions.

1,058 citations

Journal ArticleDOI
03 Apr 1998-Science
TL;DR: A model that assumes that users make a sequence of decisions to proceed to another page, continuing as long as the value of the current page exceeds some threshold, yields the probability distribution for the number of pages that a user visits within a given Web site.
Abstract: One of the most common modes of accessing information in the World Wide Web is surfing from one document to another along hyperlinks. Several large empirical studies have revealed common patterns of surfing behavior. A model that assumes that users make a sequence of decisions to proceed to another page, continuing as long as the value of the current page exceeds some threshold, yields the probability distribution for the number of pages that a user visits within a given Web site. This model was verified by comparing its predictions with detailed measurements of surfing patterns. The model also explains the observed Zipf-like distributions in page hits observed at Web sites.

772 citations

Patent
04 Dec 2000
TL;DR: In this paper, a search and recommendation system employs the preferences and profiles of individual users and groups within a community of users, as well as information derived from categorically organized content pointers, to augment Internet searches, re-rank search results and provide recommendations for objects based on an initial subject-matter query.
Abstract: A search and recommendation system employs the preferences and profiles of individual users and groups within a community of users, as well as information derived from categorically organized content pointers, to augment Internet searches, re-rank search results, and provide recommendations for objects based on an initial subject-matter query. The search and recommendation system operates in the context of a content pointer manager, which stores individual users' content pointers (some of which may be published or shared for group use) on a centralized content pointer database connected to the Internet. The shared content pointer manager is implemented as a distributed program, portions of which operate on users' terminals and other portions of which operate on the centralized content pointer database. A user's content pointers are organized in accordance with a local topical categorical hierarchy. The hierarchical organization is used to define a relevance context within which returned objects are evaluated and ordered.

496 citations

Proceedings ArticleDOI
13 Apr 1996
TL;DR: This paper presents the exploration into techniques that utilize both the topology and textual similarity between items as well as usage data collected by servers and page meta-information lke title and size.
Abstract: In its current implementation, the World-Wide Web lacks much of the explicit structure and strong typing found in many closed hypertext systems. While this property probably relates to the explosive acceptance of the Web, it further complicates the already difficult problem of identifying usable structures and aggregates in large hypertext collections. These reduced structures, or localities, form the basis for simplifying visualizations of and navigation through complex hypertext systems. Much of the previous research into identifying aggregates utilize graph theoretic algorithms based upon structural topology, i.e., the linkages between items. Other research has focused on content analysis to form document collections. This paper presents our exploration into techniques that utilize both the topology and textual similarity between items as well as usage data collected by servers and page meta-information lke title and size. Linear equations and spreading activation models are employed to arrange Web pages based upon functional categories, node types, and relevancy.

494 citations

Proceedings ArticleDOI
01 Mar 2001
TL;DR: Two computational methods for understanding the relationship between user needs and user actions are described, which use a concept called “information scent”, which is the subjective sense of value and cost of accessing a page based on perceptual cues.
Abstract: On the Web, users typically forage for information by navigating from page to page along Web links. Their surfing patterns or actions are guided by their information needs. Researchers need tools to explore the complex interactions between user needs, user actions, and the structures and contents of the Web. In this paper, we describe two computational methods for understanding the relationship between user needs and user actions. First, for a particular pattern of surfing, we seek to infer the associated information need. Second, given an information need, and some pages as starting pints, we attempt to predict the expected surfing patterns. The algorithms use a concept called “information scent”, which is the subjective sense of value and cost of accessing a page based on perceptual cues. We present an empirical evaluation of these two algorithms, and show their effectiveness.

454 citations


Cited by
More filters
Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Proceedings Article
11 Nov 1999
TL;DR: This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them, and shows how to efficiently compute PageRank for large numbers of pages.
Abstract: The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation.

14,400 citations

Journal ArticleDOI
Jon Kleinberg1
TL;DR: This work proposes and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure, and has connections to the eigenvectors of certain matrices associated with the link graph.
Abstract: The network structure of a hyperlinked environment can be a rich source of information about the content of the environment, provided we have effective means for understanding it. We develop a set of algorithmic tools for extracting information from the link structures of such environments, and report on experiments that demonstrate their effectiveness in a variety of context on the World Wide Web. The central issue we address within our framework is the distillation of broad search topics, through the discovery of “authorative” information sources on such topics. We propose and test an algorithmic formulation of the notion of authority, based on the relationship between a set of relevant authoritative pages and the set of “hub pages” that join them together in the link structure. Our formulation has connections to the eigenvectors of certain matrices associated with the link graph; these connections in turn motivate additional heuristrics for link-based analysis.

8,328 citations

Journal ArticleDOI
TL;DR: The authors address the role of marketing in hypermedia computer-mediated environments by considering hypermedia CMEs to be large-scale (i.e., national or global) networked enviro...
Abstract: The authors address the role of marketing in hypermedia computer-mediated environments (CMEs). Their approach considers hypermedia CMEs to be large-scale (i.e., national or global) networked enviro...

4,695 citations