scispace - formally typeset
Search or ask a question
Author

James F. Klemic

Bio: James F. Klemic is an academic researcher from Yale University. The author has contributed to research in topics: Carbon nanotube & Chemical vapor deposition. The author has an hindex of 17, co-authored 24 publications receiving 3770 citations.

Papers
More filters
Journal ArticleDOI
01 Feb 2007-Nature
TL;DR: This work reports an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrates the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response.
Abstract: Semiconducting nanowires have the potential to act as highly sensitive sensors for the detection of pathogenic microorganisms, without the need for a label on the pathogen. Practical miniature sensors would have applications in diagnostics, homeland security and basic research. Current technologies have not been widely adopted for various reasons, including the difficulty of integrating nanoscale devices into practical sensors. Now a team spanning five departments at Yale has developed a new approach to the problem. In a state-of-the-art (CMOS-compatible) system they create miniature, ultra-sensitive sensors that can detect specific unlabelled antibodies at concentrations below 100 femtomolar and are able to monitor the cellular immune response in 'real-time'. A new approach that uses complementary metal oxide semiconductor field effect transistor compatible technology is reported, and demonstrates the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms1,2,3,4,5,6,7,8,9,10. Successful solution-phase nanowire sensing has been demonstrated for ions3, small molecules4, proteins5,6, DNA7 and viruses8; however, ‘bottom-up’ nanowires (or similarly configured carbon nanotubes11) used for these demonstrations require hybrid fabrication schemes12,13, which result in severe integration issues that have hindered widespread application. Alternative ‘top-down’ fabrication methods of nanowire-like devices9,10,14,15,16,17 produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications.

1,364 citations

Journal ArticleDOI
TL;DR: A novel protein chip technology is developed that allows the high-throughput analysis of biochemical activities, and this approach is used to analyse nearly all of the protein kinases from Saccharomyces cerevisiae, finding many novel activities and that a large number ofprotein kinases are capable of phosphorylating tyrosine.
Abstract: We have developed a novel protein chip technology that allows the high-throughput analysis of biochemical activities, and used this approach to analyse nearly all of the protein kinases from Saccharomyces cerevisiae. Protein chips are disposable arrays of microwells in silicone elastomer sheets placed on top of microscope slides. The high density and small size of the wells allows for high-throughput batch processing and simultaneous analysis of many individual samples. Only small amounts of protein are required. Of 122 known and predicted yeast protein kinases, 119 were overexpressed and analysed using 17 different substrates and protein chips. We found many novel activities and that a large number of protein kinases are capable of phosphorylating tyrosine. The tyrosine phosphorylating enzymes often share common amino acid residues that lie near the catalytic region. Thus, our study identified a number of novel features of protein kinases and demonstrates that protein chip technology is useful for high-throughput screening of protein biochemical activity.

814 citations

Journal ArticleDOI
TL;DR: In this article, the growth of freestanding carbon nanotubes on submicron nickel dot(s) on silicon has been achieved by plasmaenhanced-hot-filamentchemical-vapor deposition (PE-HF-CVD).
Abstract: Patterned growth of freestanding carbon nanotube(s) on submicron nickel dot(s) on silicon has been achieved by plasma-enhanced-hot-filament-chemical-vapor deposition (PE-HF-CVD). A thin film nickel grid was fabricated on a silicon wafer by standard microlithographic techniques, and the PE-HF-CVD was done using acetylene (C2H2) gas as the carbon source and ammonia (NH3) as a catalyst and dilution gas. Well separated, single carbon nanotubes were observed to grow on the grid. The structures had rounded base diameters of approximately 150 nm, heights ranging from 0.1 to 5 μm, and sharp pointed tips. Transmission electron microscopy cross-sectional image clearly showed that the structures are indeed hollow nanotubes. The diameter and height depend on the nickel dot size and growth time, respectively. This nanotube growth process is compatible with silicon integrated circuit processing. Using this method, devices requiring freestanding vertical carbon nanotube(s) such as scanning probe microscopy, field emissi...

445 citations

PatentDOI
Alessandro Gomez1, James F. Klemic1, Weiwei Deng1, Xiaohui Li1, Mark A. Reed1 
TL;DR: In this article, a microfabricated system of electrospraying and a method of fabricating the multiplex system is provided in order to increase by orders of magnitude the liquid flow rate to be dispersed and of retaining the quasi-monodispersity of the generated droplets.

215 citations

Journal ArticleDOI
TL;DR: The first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes is described, indicating the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.

209 citations


Cited by
More filters
Journal ArticleDOI
10 Jan 2002-Nature
TL;DR: The analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions, which contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
Abstract: Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.

4,895 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

PatentDOI
13 May 2002-Science
TL;DR: In this paper, the authors proposed a method for using proteome chips to systematically assay all protein interactions in a species in a high-throughput manner, and also related to methods for making protein arrays by attaching double-tagged fusion proteins to a solid support.
Abstract: The present invention relates to proteome chips comprising arrays having a large proportion of all proteins expressed in a single species. The invention also relates to methods for making proteome chips. The invention also relates to methods for using proteome chips to systematically assay all protein interactions in a species in a high-throughput manner. The present invention also relates to methods for making and purifying eukaryotic proteins in a high-density array format. The invention also relates to methods for making protein arrays by attaching double-tagged fusion proteins to a solid support. The invention also relates to a method for identifying whether a signal is positive.

1,967 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress and advances that have been made on: (a) dispersion of CNTs in a polymer matrix, including optimum blending, in situ polymerization and chemical functionalization; and (b) alignment of CNNs in the matrix enhanced by ex situ techniques, force and magnetic fields, electrospinning and liquid crystalline phase-induced methods.
Abstract: Polymer/carbon nanotube (CNT) composites are expected to have good processability characteristics of the polymer and excellent functional properties of the CNTs. The critical challenge, however, is how to enhance dispersion and alignment of CNTs in the matrix. Here, we review recent progress and advances that have been made on: (a) dispersion of CNTs in a polymer matrix, including optimum blending, in situ polymerization and chemical functionalization; and (b) alignment of CNTs in the matrix enhanced by ex situ techniques, force and magnetic fields, electrospinning and liquid crystalline phase-induced methods. In addition, discussions on mechanical, thermal, electrical, electrochemical, optical and super-hydrophobic properties; and applications of polymer/CNT composites are included. Enhanced dispersion and alignment of CNTs in the polymer matrix will promote and extend the applications and developments of polymer/CNT nanocomposites.

1,848 citations