scispace - formally typeset
Search or ask a question
Author

James G. Lawless

Bio: James G. Lawless is an academic researcher from Ames Research Center. The author has contributed to research in topics: Murchison meteorite & Amino acid. The author has an hindex of 27, co-authored 52 publications receiving 3063 citations.


Papers
More filters
Journal ArticleDOI
05 Dec 1970-Nature
TL;DR: Organic molecules found in meteorites seem to have been formed before the meteorites reached Earth, according to new research.
Abstract: Extraterrestrial abiotic amino acids and hydrocarbons in type II carbonaceous chondrite at Murchison, Australia

762 citations

Journal ArticleDOI
TL;DR: Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, beta-aminoisobutyric acid, and norvaline that appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution.
Abstract: Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution.

269 citations

Journal ArticleDOI
TL;DR: The observation of orotic acid and 4-aminoimidazole-5-carboxamide suggests that the contemporary biosynthetic pathways for nucleotides may have evolved from the compounds released on hydrolysis of HCN oligomers.
Abstract: Dilute (0.1M) solutions of HCN condense to oligomers at pH 9.2. Hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide and amino acids. These results, together with the earlier data, demonstrate that the three main classes of nitrogen-containing biomolecules, purines, pyrimidines and amino acids may have originated from HCN on the primitive earth. The observation of orotic acid and 4-aminoimidazole-5-carboxamide suggests that the contemporary biosynthetic pathways for nucleotides may have evolved from the compounds released on hydrolysis of HCN oligomers.

249 citations

Book ChapterDOI
01 Jan 1973
TL;DR: The strength of the K line of singly ionized calcium has been measured for several hundred A-type stars within a few hundred parsecs of the Sun and for the A stars in several galactic star clusters as mentioned in this paper.
Abstract: The strength of the K line of singly ionized calcium has been measured for several hundred A-type stars within a few hundred parsecs of the Sun and for the A stars in several galactic star clusters. The derived abundance of calcium varies from star to star by up to a factor of 2, and there is no correlation of abundance with the space motion of the stars.

177 citations

Journal ArticleDOI
22 Nov 1979-Nature
TL;DR: In this paper, the abundances of straight and branched-chain isomers of the monocarboxylic acids found in the Murchison carbonaceous chondrite are determined.
Abstract: The abundances of some of the straight- and branched-chain isomers of the monocarboxylic acids found in the Murchison carbonaceous chondrite are determined. Monocarboxylic acids extracted from a crushed sample of Murchison interior were quantified by means of gas chromatography and mass spectroscopy after a spiking solution of deuterated analogues of 11 carboxylic acids had been added. Monocarboxylic acid abundances are found to range between 1.83 and 0.01 micromole/g, which is significantly higher than Murchison amino acid concentrations, and to decrease with increasing carbon number for both branched and unbranched molecules. The results are interpreted to support the abiotic extraterrestrial synthesis of monocarboxylic acids. Possible mechanisms leading to the equal synthesis of branched and each unbranched carboxylic acid with the same carbon number are considered, noting that the Fischer-Tropsch Type mechanism by itself is incapable of accounting for the observed distributions.

148 citations


Cited by
More filters
Journal ArticleDOI
16 Aug 1996-Science
TL;DR: High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and iron sulfides.
Abstract: Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-sulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features, including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.

1,582 citations

Journal ArticleDOI
TL;DR: In situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces.
Abstract: Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived.

1,582 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A supramolecular SMM dimer in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs, suggesting a means of tuning the quantum tunnelling of magnetization in SMMs.
Abstract: Various present and future specialized applications of magnets require monodisperse, small magnetic particles, and the discovery of molecules that can function as nanoscale magnets was an important development in this regard. These molecules act as single-domain magnetic particles that, below their blocking temperature, exhibit magnetization hysteresis, a classical property of macroscopic magnets. Such 'single-molecule magnets' (SMMs) straddle the interface between classical and quantum mechanical behaviour because they also display quantum tunnelling of magnetization and quantum phase interference. Quantum tunnelling of magnetization can be advantageous for some potential applications of SMMs, for example, in providing the quantum superposition of states required for quantum computing. However, it is a disadvantage in other applications, such as information storage, where it would lead to information loss. Thus it is important to both understand and control the quantum properties of SMMs. Here we report a supramolecular SMM dimer in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. This system may also prove useful for studying quantum tunnelling of relevance to mesoscopic antiferromagnets.

858 citations

Journal ArticleDOI
14 Feb 1997-Science
TL;DR: Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid obtained from the Murchison meteorite show that the L enantiomer occurs in excess, indicative of an asymmetric influence on organic chemical evolution before the origin of life.
Abstract: Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid (dl-alpha-methylisoleucine and dl-alpha-methylalloisoleucine) obtained from the Murchison meteorite show that the L enantiomer occurs in excess (7.0 and 9.1%, respectively) in both of the enantiomeric pairs. Similar results were obtained for two other alpha-methyl amino acids, isovaline and alpha-methylnorvaline, although the alpha hydrogen analogs of these amino acids, alpha-amino-n-butyric acid and norvaline, were found to be racemates. With the exception of alpha-amino-n-butyric acid, these amino acids are either unknown or of limited occurrence in the biosphere. Because carbonaceous chondrites formed 4.5 billion years ago, the results are indicative of an asymmetric influence on organic chemical evolution before the origin of life.

768 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: The results demonstrate that the spontaneous generation of amino acids in the interstellar medium is possible, supporting the suggestion that prebiotic molecules could have been delivered to the early Earth by cometary dust, meteorites or interplanetary dust particles.
Abstract: Amino acids are the essential molecular components of living organisms on Earth, but the proposed mechanisms for their spontaneous generation have been unable to account for their presence in Earth's early history1. The delivery of extraterrestrial organic compounds has been proposed as an alternative to generation on Earth2,3,4,5, and some amino acids have been found in several meteorites6,7,8,9. Here we report the detection of amino acids in the room-temperature residue of an interstellar ice analogue that was ultraviolet-irradiated in a high vacuum at 12 K. We identified 16 amino acids; the chiral ones showed enantiomeric separation. Some of the identified amino acids are also found in meteorites. Our results demonstrate that the spontaneous generation of amino acids in the interstellar medium is possible, supporting the suggestion that prebiotic molecules could have been delivered to the early Earth by cometary dust, meteorites or interplanetary dust particles.

743 citations