scispace - formally typeset
Search or ask a question
Author

James H. Fowler

Bio: James H. Fowler is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Population & Social network. The author has an hindex of 82, co-authored 240 publications receiving 34976 citations. Previous affiliations of James H. Fowler include University of California, Davis & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: Network phenomena appear to be relevant to the biologic and behavioral trait of obesity, and obesity appears to spread through social ties, which has implications for clinical and public health interventions.
Abstract: Background The prevalence of obesity has increased substantially over the past 30 years. We performed a quantitative analysis of the nature and extent of the person-to-person spread of obesity as a possible factor contributing to the obesity epidemic. Methods We evaluated a densely interconnected social network of 12,067 people assessed repeatedly from 1971 to 2003 as part of the Framingham Heart Study. The bodymass index was available for all subjects. We used longitudinal statistical models to examine whether weight gain in one person was associated with weight gain in his or her friends, siblings, spouse, and neighbors. Results Discernible clusters of obese persons (body-mass index [the weight in kilograms divided by the square of the height in meters], ≥30) were present in the network at all time points, and the clusters extended to three degrees of separation. These clusters did not appear to be solely attributable to the selective formation of social ties among obese persons. A person’s chances of becoming obese increased by 57% (95% confidence interval [CI], 6 to 123) if he or she had a friend who became obese in a given interval. Among pairs of adult siblings, if one sibling became obese, the chance that the other would become obese increased by 40% (95% CI, 21 to 60). If one spouse became obese, the likelihood that the other spouse would become obese increased by 37% (95% CI, 7 to 73). These effects were not seen among neighbors in the immediate geographic location. Persons of the same sex had relatively greater influence on each other than those of the opposite sex. The spread of smoking cessation did not account for the spread of obesity in the network. Conclusions Network phenomena appear to be relevant to the biologic and behavioral trait of obesity, and obesity appears to spread through social ties. These findings have implications for clinical and public health interventions.

4,783 citations

Journal ArticleDOI
TL;DR: Evidence from a selection of research topics relevant to pandemics is discussed, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping.
Abstract: The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behaviour with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic and highlight important gaps researchers should move quickly to fill in the coming weeks and months.

3,223 citations

Journal ArticleDOI
06 Feb 2009-Science
TL;DR: In this article, a field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individual and group behaviors at a large scale, such as behavior patterns.
Abstract: A field is emerging that leverages the capacity to collect and analyze data at a scale that may reveal patterns of individual and group behaviors.

2,619 citations

Journal ArticleDOI
TL;DR: Despite the decrease in smoking in the overall population, the size of the clusters of smokers remained the same across time, suggesting that whole groups of people were quitting in concert.
Abstract: BACKGROUND The prevalence of smoking has decreased substantially in the United States over the past 30 years. We examined the extent of the person-to-person spread of smoking behavior and the extent to which groups of widely connected people quit together. METHODS We studied a densely interconnected social network of 12,067 people assessed repeatedly from 1971 to 2003 as part of the Framingham Heart Study. We used network analytic methods and longitudinal statistical models. RESULTS Discernible clusters of smokers and nonsmokers were present in the network, and the clusters extended to three degrees of separation. Despite the decrease in smoking in the overall population, the size of the clusters of smokers remained the same across time, suggesting that whole groups of people were quitting in concert. Smokers were also progressively found in the periphery of the social network. Smoking cessation by a spouse decreased a person's chances of smoking by 67% (95% confidence interval [CI], 59 to 73). Smoking cessation by a sibling decreased the chances by 25% (95% CI, 14 to 35). Smoking cessation by a friend decreased the chances by 36% (95% CI, 12 to 55 ). Among persons working in small firms, smoking cessation by a coworker decreased the chances by 34% (95% CI, 5 to 56). Friends with more education influenced one another more than those with less education. These effects were not seen among neighbors in the immediate geographic area. CONCLUSIONS Network phenomena appear to be relevant to smoking cessation. Smoking behavior spreads through close and distant social ties, groups of interconnected people stop smoking in concert, and smokers are increasingly marginalized socially. These findings have implications for clinical and public health interventions to reduce and prevent smoking.

2,165 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Results from a randomized controlled trial of political mobilization messages delivered to 61 million Facebook users during the 2010 US congressional elections show that the messages directly influenced political self-expression, information seeking and real-world voting behaviour of millions of people.
Abstract: Online social networks are everywhere. They must be influencing the way society is developing, but hard evidence is scarce. For instance, the relative effectiveness of online friendships and face-to-face friendships as drivers of social change is not known. In what may be the largest experiment ever conducted with human subjects, James Fowler and colleagues randomly assigned messages to 61 million Facebook users on Election Day in the United States in 2010, and tracked their behaviour both online and offline, using publicly available records. The results show that the messages influenced the political communication, information-seeking and voting behaviour of millions of people. Social messages had more impact than informational messages and 'weak ties' were much less likely than 'strong ties' to spread behaviour via the social network. Thus online mobilization works primarily through strong-tie networks that may exist offline but have an online representation.

2,003 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations