scispace - formally typeset
Search or ask a question
Author

James J. Bailey

Bio: James J. Bailey is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Electrocardiography & Population. The author has an hindex of 18, co-authored 40 publications receiving 2454 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.

649 citations

Journal ArticleDOI
TL;DR: Technologic advances and published studies point to the need to reevaluate requirements for recording and analysis of electrocardiographic (ECG) data, and high-frequency components and lowamplitude signals in the ECG known primarily to researchers are now regarded with wider interest.
Abstract: R ecent technologic advances and published studies point to the need to reevaluate requirements for recording and analysis of electrocardiographic (ECG) data. Several issues have arisen from recent developments. First, approximately 52 million ECGs were processed by computer in 1987 (up from 4 million in 1975), and more than 15,000 digital ECG systems are now in use (up from 85 in 1975).1 In addition, computer-assisted electrocardiography is spreading rapidly from academic medical centers to private hospitals, clinics, and physicians' offices. A major factor in this diffusion of technology is the introduction of inexpensive (less than $5,000) stand-alone interpretative carts using microchip technology.' Second, a large number of ECG systems, particularly stand-alone carts, convert data into digital form immediately after amplification and process it digitally. This type of processing, combined with preamplifiers with lower noise characteristics than those available earlier, permits higher resolutions and signal-to-noise ratios than conventional linear analog systems. Third, high-frequency components and lowamplitude signals in the ECG known primarily to researchers are now regarded with wider interest. Distinguishing between the needs of researchers and requirements for routine ECG recording has become more difficult.

315 citations

Journal Article
TL;DR: The cardiac blood pool is visualized with high temporal resolution during a complete, average, cardiac cycle and yields both qualitative and quantitative measures of cardiac performance.
Abstract: The cardiac blood pool is visualized with high temporal resolution during a complete, average, cardiac cycle. The technique yields both qualitative and quantitative measures of cardiac performance.

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Receiver-operating characteristic (ROC) plots provide a pure index of accuracy by demonstrating the limits of a test's ability to discriminate between alternative states of health over the complete spectrum of operating conditions.
Abstract: The clinical performance of a laboratory test can be described in terms of diagnostic accuracy, or the ability to correctly classify subjects into clinically relevant subgroups. Diagnostic accuracy refers to the quality of the information provided by the classification device and should be distinguished from the usefulness, or actual practical value, of the information. Receiver-operating characteristic (ROC) plots provide a pure index of accuracy by demonstrating the limits of a test's ability to discriminate between alternative states of health over the complete spectrum of operating conditions. Furthermore, ROC plots occupy a central or unifying position in the process of assessing and using diagnostic tools. Once the plot is generated, a user can readily go on to many other activities such as performing quantitative ROC analysis and comparisons of tests, using likelihood ratio to revise the probability of disease in individual subjects, selecting decision thresholds, using logistic-regression analysis, using discriminant-function analysis, or incorporating the tool into a clinical strategy by using decision analysis.

6,339 citations

Journal ArticleDOI
TL;DR: The past history, and likely future of this important topic has been/will remain more “evolution” than “big-bang”, and the current redefinition was flawed at inception owing to a fundamental problem with the troponin assays available at that time.
Abstract: Myocardial infarction is a major cause of death and disability worldwide. Coronary atherosclerosis is a chronic disease with stable and unstable periods. During unstable periods with activated inflammation in the vascular wall, patients may develop a myocardial infarction. Myocardial infarction may be a minor event in a lifelong chronic disease, it may even go undetected, but it may also be a major catastrophic event leading to sudden death or severe hemodynamic deterioration. A myocardial infarction may be the first manifestation of coronary artery disease, or it may occur, repeatedly, in patients with established disease. Information on myocardial infarction attack rates can provide useful data regarding the burden of coronary artery disease within and across populations, especially if standardized data are collected in a manner that demonstrates the distinction between incident and recurrent events. From the epidemiological point of view, the incidence of myocardial infarction in a population can be used as a proxy for the prevalence of coronary artery disease in that population. Furthermore, the term myocardial infarction has major psychological and legal implications for the individual and society. It is an indicator of one of the leading health problems in the world, and it is an outcome measure in clinical trials and observational studies. With these perspectives, myocardial infarction may be defined from a number of different clinical, electrocardiographic, biochemical, imaging, and pathological characteristics. In the past, a general consensus existed for the clinical syndrome designated as myocardial infarction. In studies of disease prevalence, the World Health Organization (WHO) defined myocardial infarction from symptoms, ECG abnormalities, and enzymes. However, the development of more sensitive and specific serological biomarkers and precise imaging techniques allows detection of ever smaller amounts of myocardial necrosis. Accordingly, current clinical practice, health care delivery systems, as well as epidemiology and clinical trials all require a …

3,774 citations

Journal ArticleDOI
TL;DR: Information on myocardial infarction attack rates can provide useful data regarding the burden of coronary artery disease within and across populations, especially if standardized data are collected in a manner that demonstrates the distinction between incident and recurrent events.
Abstract: ![Graphic][1] Myocardial infarction is a major cause of death and disability worldwide. Coronary atherosclerosis is a chronic disease with stable and unstable periods. During unstable periods with activated inflammation in the vascular wall, patients may develop a myocardial infarction. Myocardial infarction may be a minor event in a lifelong chronic disease, it may even go undetected, but it may also be a major catastrophic event leading to sudden death or severe haemodynamic deterioration. A myocardial infarction may be the first manifestation of coronary artery disease, or it may occur, repeatedly, in patients with established disease. Information on myocardial infarction attack rates can provide useful data regarding the burden of coronary artery disease within and across populations, especially if standardized data are collected in a manner that demonstrates the distinction between incident and recurrent events. From the epidemiological point of view, the incidence of myocardial infarction in a population can be used as a proxy for the prevalence of coronary artery disease in that population. Furthermore, the term myocardial infarction has major psychological and legal implications for the individual and society. It is an indicator of one of the leading health problems in the world, and it is an outcome measure in clinical trials and observational studies. With these perspectives, myocardial infarction may be defined from a number of different clinical, electrocardiographic, biochemical, imaging, and pathological characteristics. In the past, a general consensus existed for the clinical syndrome designated as myocardial infarction. In studies of disease prevalence, the World Health Organization (WHO) defined myocardial infarction from symptoms, ECG abnormalities, and enzymes. However, the development of more sensitive and specific serological biomarkers and precise imaging techniques allows detection of ever smaller amounts of myocardial necrosis. Accordingly, current clinical practice, health care delivery systems, as well as epidemiology and clinical trials all require a … [1]: /embed/inline-graphic-1.gif

3,193 citations

Journal ArticleDOI
TL;DR: These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training and current issues of practical importance in the clinical use of these standards are considered.
Abstract: The purpose of this report is to provide revised standards and guidelines for the exercise testing and training of individuals who are free from clinical manifestations of cardiovascular disease and those with known cardiovascular disease. These guidelines are intended for physicians, nurses, exercise physiologists, specialists, technologists, and other healthcare professionals involved in exercise testing and training of these populations. This report is in accord with the “Statement on Exercise” published by the American Heart Association (AHA).1 These guidelines are a revision of the 1995 standards of the AHA that addressed the issues of exercise testing and training.2 An update of background, scientific rationale, and selected references is provided, and current issues of practical importance in the clinical use of these standards are considered. These guidelines are in accord with the American College of Cardiology (ACC)/AHA Guidelines for Exercise Testing.3 ### The Cardiovascular Response to Exercise Exercise, a common physiological stress, can elicit cardiovascular abnormalities that are not present at rest, and it can be used to determine the adequacy of cardiac function. Because exercise is only one of many stresses to which humans can be exposed, it is more appropriate to call an exercise test exactly that and not a “stress test.” This is particularly relevant considering the increased use of nonexercise stress tests. ### Types of Exercise Three types of muscular contraction or exercise can be applied as a stress to the cardiovascular system: isometric (static), isotonic (dynamic or locomotory), and resistance (a combination of isometric and isotonic).4,5 Isotonic exercise, which is defined as a muscular contraction resulting in movement, primarily provides a volume load to the left ventricle, and the response is proportional to the size of the working muscle mass and the intensity of exercise. Isometric exercise is defined as a muscular contraction without movement (eg, handgrip) and imposes greater pressure than volume …

2,964 citations