scispace - formally typeset
Search or ask a question
Author

James J. Coleman

Bio: James J. Coleman is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Quantum well & Semiconductor laser theory. The author has an hindex of 43, co-authored 493 publications receiving 8290 citations. Previous affiliations of James J. Coleman include Rockwell Collins & United States Department of the Navy.


Papers
More filters
Journal ArticleDOI
20 May 2010-Nature
TL;DR: This work describes materials and fabrication concepts that address many of these challenges of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.
Abstract: Although compound semiconductors like gallium arsenide have a substantial performance advantage over silicon in photovoltaic and optoelectronic applications, these do not outweigh the costly process of growing large, high-quality layers of these materials and transferring them to flexible or transparent substrates for use in devices such as solar cells, night vision cameras and wireless communication systems. But now John Rogers and his team demonstrate a new fabrication approach that may remove this disadvantage. They grow films of GaAs and AlGaAs in thick, multilayered assemblies in a single deposition sequence, then release the individual layers and distribute them over foreign substrates by printing. The technological potential of this strategy to large-area applications is illustrated with the fabrication of GaAs devices such as field-effect transistors on glass and photovoltaic modules on sheets of plastic. Although compound semiconductors like gallium arsenide (GaAs) offer advantages over silicon for photovoltaic and optoelectronic applications, these do not outweigh the costly process of growing large layers of these materials and transferring them to appropriate substrates. However, a new fabrication approach is now demonstrated: films of GaAs and AlGaAs are grown in thick, multilayered assemblies in a single sequence; the individual layers are then released and distributed over foreign substrates by printing. Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices1,2 to radio-frequency electronics3,4 and most forms of optoelectronics5,6. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

598 citations

Journal ArticleDOI
Abstract: Data are presented showing that Zn diffusion into an AlAs‐GaAs superlattice (41 Lz∼45‐A GaAs layers, 40 LB∼150‐A AlAs layers), or into AlxGa1−xAs‐GaAs quantum‐well heterostructures, increases the Al‐Ga interdiffusion at the heterointerfaces and creates, even at low temperature (<600 °C), uniform compositionally disordered AlxGa1−xAs. For the case of the superlattice, the diffusion‐induced disordering causes a change from direct‐gap AlAs‐GaAs (Eg∼1.61 eV) to indirect‐gap AlxGa1−xAs (x∼0.77, EgX∼2.08 eV).

563 citations

Journal ArticleDOI
TL;DR: In this article, a 126-layer AlAs-GaAs superlattice has been shown to be selectively disordered by silicon implantation, where silicon ions, implanted at 375 keV and a dose of 1014 cm−2, yield a compositionally disordered region 0.33 μm thick centered 0.7 μm below the surface.
Abstract: Data are presented on a 126‐layer AlAs‐GaAs superlattice which has been selectively disordered by silicon implantation. Silicon ions, implanted at 375 keV and a dose of 1014 cm−2, yield a compositionally disordered region 0.33 μm thick centered 0.7 μm below the superlattice surface. The implanted region demonstrates reduced photoluminescence intensity relative to the unimplanted regions of the superlattice. The amphoteric nature of silicon and defect‐induced vacancies account for the range and extent of disordering observed in the superlattice.

161 citations

Journal ArticleDOI
TL;DR: In this paper, a disk-shaped IR•red (Eg ∼ 1.61 eV) GaAs•AlAs superlattice laser is demonstrated to be monolithically integrated into rectangular yellow-gap AlxGa1−xAs [x∼LB/(Lz+LB), EgX∼2.08 eV] cavities.
Abstract: Disk‐shaped IR‐red (Eg ∼1.61 eV) GaAs‐AlAs superlattice lasers (41 Lz ∼45‐A GaAs layers, 40 LB ∼150‐A AlAs layers) are demonstrated (cw 300 K) that are monolithically integrated into rectangular yellow‐gap AlxGa1−xAs [x∼LB/(Lz+LB), EgX∼2.08 eV] cavities. The yellow‐gap AlxGa1−xAs (x∼0.77) is generated by low‐temperature Zn diffusion (575 °C, 30 min), which disorders selected portions of the superlattice [portions complementary to regions (disks) masked by Si3N4].

154 citations

Journal ArticleDOI
TL;DR: The 3D-template-directed epitaxy of group III-V materials, which enables formation of 3D structured optoelectronic devices and illustrates the power of this technique by fabricating an electrically driven 3D photonic crystal LED.
Abstract: Three-dimensional photonic devices are of interest as light emitters, detectors or waveguides. However, so far their fabrication has remained a challenge. The template-directed epitaxy of three-dimensional semiconductor structures now offers a new strategy for the realization of photonic devices, demonstrated by the realization of a three-dimensional photonic crystal light-emitting diode.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: The reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
Abstract: We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.

3,629 citations

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations

Journal ArticleDOI
TL;DR: Detailed calculations of the shift of exciton peaks are presented including (i) exact solutions for single particles in infinite wells, (ii) tunneling resonance calculations for finite wells, and (iii) variational calculations ofexciton binding energy in a field.
Abstract: We report experiments and theory on the effects of electric fields on the optical absorption near the band edge in GaAs/AlGaAs quantum-well structures. We find distinct physical effects for fields parallel and perpendicular to the quantum-well layers. In both cases, we observe large changes in the absorption near the exciton peaks. In the parallel-field case, the excitons broaden with field, disappearing at fields \ensuremath{\sim}${10}^{4}$ V/cm; this behavior is in qualitative agreement with previous theory and in order-of-magnitude agreement with direct theoretical calculations of field ionization rates reported in this paper. This behavior is also qualitatively similar to that seen with three-dimensional semiconductors. For the perpendicular-field case, we see shifts of the exciton peaks to lower energies by up to 2.5 times the zero-field binding energy with the excitons remaining resolved at up to \ensuremath{\sim}${10}^{5}$ V/cm: This behavior is qualitatively different from that of bulk semiconductors and is explained through a mechanism previously briefly described by us [D. A. B. Miller et al., Phys. Rev. Lett. 53, 2173 (1984)] called the quantum-confined Stark effect. In this mechanism the quantum confinement of carriers inhibits the exciton field ionization. To support this mechanism we present detailed calculations of the shift of exciton peaks including (i) exact solutions for single particles in infinite wells, (ii) tunneling resonance calculations for finite wells, and (iii) variational calculations of exciton binding energy in a field. We also calculate the tunneling lifetimes of particles in the wells to check the inhibition of field ionization. The calculations are performed using both the 85:15 split of band-gap discontinuity between conduction and valence bands and the recently proposed 57:43 split. Although the detailed calculations differ in the two cases, the overall shift of the exciton peaks is not very sensitive to split ratio. We find excellent agreement with experiment with no fitted parameters.

1,731 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations