scispace - formally typeset
Search or ask a question
Author

James J. Collins

Bio: James J. Collins is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Synthetic biology & Population. The author has an hindex of 151, co-authored 669 publications receiving 89476 citations. Previous affiliations of James J. Collins include Baylor College of Medicine & University at Albany, SUNY.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the response of the immune system to the treatment of central giant cell granuloma and shows clear patterns of decline in the number of immune responses to treatment with chemotherapy.
Abstract: Kristen A. Richardson, 1,2 Thomas T. Imhoff, 1 Peter Grigg, 3 and James J. Collins 1,2,* 1Center for BioDynamics, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 2Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 0 3Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 0165 (Received 27 August 1997 )

25 citations

Journal ArticleDOI
TL;DR: Evidence is presented for a pathway and associated genetic factors in Escherichia coli that contribute to heightened levels of gene expression noise during stationary phase that could provide phenotypic diversity under adverse conditions such as stationary phase.

25 citations

01 Aug 2012
TL;DR: It is shown that subtle perturbations to these properties can transform an individual sTF between distinct roles within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems.
Abstract: Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.

25 citations

Journal Article
01 Mar 2018-Nature
TL;DR: CellRouter is presented, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single- cell omics data and provides insight into erythroid, myeloid and lymphoid differentiation.
Abstract: National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24DK092760)

24 citations

Journal ArticleDOI
TL;DR: The data further support the extensive clinical overlap with PLOD1-k EDS and show that vascular complications are rare manifestations of FKBP14-kEDS.

24 citations


Cited by
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: In this paper, Imagined communities: Reflections on the origin and spread of nationalism are discussed. And the history of European ideas: Vol. 21, No. 5, pp. 721-722.

13,842 citations

Journal ArticleDOI
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
TL;DR: In this paper, the authors estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.

9,324 citations