scispace - formally typeset
Search or ask a question
Author

James K. Henry

Bio: James K. Henry is an academic researcher from Duke University. The author has contributed to research in topics: Wind tunnel & Fuselage. The author has an hindex of 5, co-authored 10 publications receiving 149 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a low aspect, delta wing is modeled as a plate of constant thickness and the structural nonlinearity arises from double bending in both the chordwise and spanwise directions.
Abstract: A nonlinear, aeroelastic analysis of a low aspect, delta wing modeled as a plate of constant thickness demonstrates that limit cycle oscillations (LCO) of the order of the plate thickness are possible. The structural nonlinearity arises from double bending in both the chordwise and spanwise directions. The present results using a vortex lattice aerodynamic model for a low Mach number flow complement earlier studies for rectangular wing platforms that showed similar qualitative results. The theoretical results for the flutter boundary (beyond which LCO occurs) have been validated by comparison to the experimental data reported by other investigators for low aspect ratio delta wings. Also the limit cycle oscillations found experimentally by previous investigators (but not previously quantified prior to the present work) are consistent with the theoretical results reported here. Reduced order aerodynamic and structural models are used to substantially decrease computational cost with no loss in accuracy. Without the use of reduced order models, calculations of the LCO would be impractical. A wind tunnel model is tested to provide a quantitative experimental correlation with the theoretical results for the LCO response itself.

90 citations

Journal ArticleDOI
TL;DR: The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.
Abstract: Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.

18 citations

Journal ArticleDOI
TL;DR: In this article, a nonlinear response analysis of a simple delta wing excited by periodic gust loads in low subsonic flow is presented along with a companion wind-tunnel test program.
Abstract: A nonlinear response analysis of a simple delta wing excited by periodic gust loads in low subsonic flow is presented along with a companion wind-tunnel test program. The analytical model uses a three-dimensional time-domain vortex lattice aerodynamic method and a reduced order aerodynamic technique. Results for a single harmonic gust and a continuous frequency sweep gust have been computed and measured for both flow velocities below and above the flutter speed. A theoretical jump response phenomenon for the nonlinear structural model was observed both for the single harmonic and the continuous frequency sweep gust excitation. Those results further confirm some conclusions about limit cycle oscillations above the flutter speed and complement our earlier theoretical and experimental studies. Also an experimental investigation has been carried out in the Duke wind tunnel using a rotating slotted cylinder gust generator and an Ometron VPI 4000 scanning laser vibrometer measurement system. The fair to good quantitative agreement between theory and experiment verifies that the present analytical approach has reasonable accuracy and good computational efficiency for nonlinear gust response analysis in the time domain. Without the use of reduced order models, calculations of the gust response for the nonlinear model treated here would be impractical.

14 citations

Journal ArticleDOI
TL;DR: Results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure, while structural acoustic coupling is found to not be significantly affected by varying panel position.
Abstract: Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed.

13 citations

Journal ArticleDOI
TL;DR: The effects of a steady angle of attack on the nonlinear aeroelastic response of a delta wing model to a periodic gust have been studied in this article, where a three-dimensional time-domain vortex lattice aerodynamic model and a reduced order aerodynamic technique were used and the structure was modelled using von Karman plate theory that allows for geometric strain-displacement nonlinearities in the delta wing structure.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a review of the physical models for a fluid undergoing time-dependent motes and their applications in many fields of engineering, such as aeronautic and structural engineering.
Abstract: ▪ Abstract The interaction of a flexible structure with a flowing fluid in which it is submersed or by which it is surrounded gives rise to a rich variety of physical phenomena with applications in many fields of engineering, for example, the stability and response of aircraft wings, the flow of blood through arteries, the response of bridges and tall buildings to winds, the vibration of turbine and compressor blades, and the oscillation of heat exchangers. To understand these phenomena we need to model both the structure and the fluid. However, in keeping with the overall theme of this volume, the emphasis here is on the fluid models. Also, the applications are largely drawn from aerospace engineering although the methods and fundamental physical phenomena have much wider applications. In the present article, we emphasize recent developments and future challenges. To provide a context for these, the article begins with a description of the various physical models for a fluid undergoing time-dependent mot...

556 citations

Journal ArticleDOI
TL;DR: In this article, a review of the aerodynamic properties of nonslender delta wings is presented, covering topics of shear layer instabilities, structure of non-slender vortices, breakdown, maneuvering wings, and fluid/structure interactions.

295 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of nonlinear aerodynamic effects on the divergence, utter, and limit-cycle oscillation (LCO) characteristics of a transonic airfoil cone guration.
Abstract: By the use of a state-of-the-art computational e uid dynamic (CFD) method to model nonlinear steady and unsteady transonice owsin conjunction with a linearstructural model,an investigationismadeinto how nonlinear aerodynamics can effect the divergence, e utter, and limit-cycle oscillation (LCO) characteristics of a transonic airfoil cone guration. A single-degree-of-freedom (DOF) model is studied for divergence, and one- and two-DOF models are studied for e utter and LCO. A harmonicbalancemethod in conjunction with the CFD solver is used to determine the aerodynamics for e nite amplitude unsteady excitations of a prescribed frequency. A procedure for determining the LCO solution is also presented. For the cone guration investigated, nonlinear aerodynamic effects are found to produce a favorable transonic divergence trend and unstable and stable LCO solutions, respectively, for the one- and two-DOF e utter models. Nomenclature a = nondimensional location of airfoil elastic axis, e=b b, c = semichord and chord, respectively cl, cm = coefe cients of lift and moment about elastic axis, respectively e = location of airfoil elastic axis, measured positive aft of airfoil midchord h, ® = airfoil plunge and pitch degrees of freedom I® = second moment of inertia of airfoil about elastic axis

282 citations

Journal ArticleDOI
TL;DR: Aeroelasticity is still dynamic, challenging, and a key part of cutting-edge airplane technology as mentioned in this paper, and emerging trends, as well as challenges and needs in the field of airplane aero elasticity, are surveyed and discussed.
Abstract: Aeroelasticity is still dynamic, challenging, and a key part of cutting-edge airplane technology. Emerging trends, as well as challenges and needs in the field of airplane aeroelasticity, are surveyed and discussed. The paper complements other overview papers on various aspects of the fixed-wing aeroelastic problem, published recently for the centennial year of flight. It includes an extensive bibliography and emphasizes those aspects of aeroelastic technology development not covered thoroughly elsewhere.

233 citations

Journal ArticleDOI
TL;DR: The von Karman lecture as mentioned in this paper discusses the state of the art in nonlinear aeroelasticity and unsteady aerodynamics and identifies several of the most significant nonlinearities arising in a structure or in an aerodynamic flow field.
Abstract: In this von Karman lecture, a subject is addressed whose foundations were significantly influenced by the work of Theodore von Karman. A classic paper by von Karman and Sears first considered the determination of aerodynamic forces on an airfoil undergoing general time-dependent motion. Also, early in his career, von Karman investigated fundamental issues in structural mechanics and derived the celebrated von Karman plate equations for determining the large (nonlinear) deflections of an elastic plate under a distributed force. Finally, he authored a widely cited paper on the importance of nonlinearities for engineers and engineering. In this lecture, these themes are recalled and the current state of the art in nonlinear aeroelasticity and unsteady aerodynamics is discussed. Several of the most significant nonlinearities arising in a structure or in an aerodynamic flow field are identified. Recent and relevant theoretical and experimental studies are reviewed and future developments are projected that are expected to have a significant impact on our ability to understand and beneficially use nonlinear dynamic aeroelastic behavior

188 citations