scispace - formally typeset
Search or ask a question
Author

James L. Best

Bio: James L. Best is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Bedform & Turbulence. The author has an hindex of 67, co-authored 294 publications receiving 14109 citations. Previous affiliations of James L. Best include Birkbeck, University of London & National University of Cordoba.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a synthesis of the literature on the 32 biggest rivers in the world and propose a governance framework to monitor these rivers, finance their continual upkeep and help ameliorate increasing anthropogenic pressures, including large-scale damming, hydrological change, pollution, introduction of non-native species and sediment mining.
Abstract: The world’s big rivers and their floodplains were central to development of civilization and are now home to c. 2.7 billion people. They are economically vital whilst also constituting some of the most diverse habitats on Earth. However, a number of anthropogenic stressors, including large-scale damming, hydrological change, pollution, introduction of non-native species and sediment mining, challenge their integrity and future, as never before. The rapidity and extent of such change is so great that large-scale, and potentially irreparable, transformations may ensue in periods of years to decades, with ecosystem collapse being possible in some big rivers. Prioritizing the fate of the world’s great river corridors on an international political stage is imperative. Future sustainable management, and establishment of environmental flow requirements for the world’s big rivers, must be supported through co-ordinated international funding, and trans-continental political agreement to monitor these rivers, finance their continual upkeep and help ameliorate increasing anthropogenic pressures. To have any effect, all of these must be set within an inclusive governance framework across scales, organizations and local populace. Stressors such as large-scale damming, hydrological change, pollution, the introduction of non-native species and sediment mining are challenging the integrity and future of large rivers, according to a synthesis of the literature on the 32 biggest rivers.

598 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the principal features of mean and turbulent flow over alluvial sand dunes and highlighted some possible focus areas for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of dunes-related turbulence and its interactions
Abstract: [1] Dunes are present in nearly all fluvial channels and are vital in predicting flow resistance, sediment transport, and deposition within many rivers. Progress in understanding the fluid dynamics associated with alluvial dunes has been significant in the last 15 years and has witnessed huge advances in field, laboratory, and numerical investigations. Progress has been made in detailing the principal features of mean and turbulent flow over asymmetric dunes that possess flow separation in their leesides and how these forms affect both downstream boundary layer structure and stress partitioning over the dune. Additionally, the links between sediment transport over dunes and instantaneous coherent flow structures are being increasingly understood, with the feedback of dune three-dimensionality upon flow and sediment dynamics over these bed forms beginning to be recognized as vital. Such research now provides an outstanding background for beginning to address areas of greater complexity that will enable a fuller understanding of these important natural features. This review paper summarizes the principal features of mean and turbulent flow over alluvial sand dunes. Five areas are then highlighted and discussed as a possible focus for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) the influence of three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of dune-related turbulence and its interactions with sediment transport and the flow surface, and (5) the influence of suspended sediment on the dune flow field and dune morphology.

414 citations

Journal ArticleDOI
James L. Best1
TL;DR: In this paper, the authors present results of a quantitative investigation of sediment transport at channel confluences accomplished through both scaled laboratory flume simulation and complementary monitoring of a natural channel confluence, showing that sediment contributions from the confluent channels are progressively segregated in their paths through the junction, with sediment being transported around rather than through the centre of the confluence.
Abstract: River channel confluences form important morphological elements of every river system, being points at which rapid changes in flow, sediment discharge and hydraulic geometry must be accommodated. This article presents results of a quantitative investigation of sediment transport at channel confluences accomplished through both scaled laboratory flume simulation and complementary monitoring of a natural channel confluence. Bed morphology at channel confluences is characterized by three distinct elements: avalanche faces at the mouth of each confluent channel, a deep central scour and a bar within the separation zone formed at the downstream junction corner. These elements are controlled predominantly by the confluence angle and the ratio of discharges between the tributary and mainstream channels. As confluence angle and discharge ratio increase, the sediment contributions from the confluent channels are progressively segregated in their paths through the junction, with sediment being transported around rather than through the centre of the confluence. This segregation of sediment loads is accompanied by the retreat of the main channel avalanche face from the confluence, an increase in the scour depth, a change in the orientation of the scour and an increase in the size of the separation zone bar. Field measurements closely replicate the flume simulation. A model of sediment transport and bed morphology links these features to the fluid dynamics of these sites. An understanding of confluence dynamics is important not only in considerations of channel morphology and design criteria but must form the basis for the interpretation of confluence sediments in the ancient record.

412 citations

Journal Article
TL;DR: In this paper, the authors summarized the principal features of mean and turbulent flow over alluvial sand dunes and highlighted some possible focus areas for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of Dune-related turbulence and its interactions
Abstract: [1] Dunes are present in nearly all fluvial channels and are vital in predicting flow resistance, sediment transport, and deposition within many rivers. Progress in understanding the fluid dynamics associated with alluvial dunes has been significant in the last 15 years and has witnessed huge advances in field, laboratory, and numerical investigations. Progress has been made in detailing the principal features of mean and turbulent flow over asymmetric dunes that possess flow separation in their leesides and how these forms affect both downstream boundary layer structure and stress partitioning over the dune. Additionally, the links between sediment transport over dunes and instantaneous coherent flow structures are being increasingly understood, with the feedback of dune three-dimensionality upon flow and sediment dynamics over these bed forms beginning to be recognized as vital. Such research now provides an outstanding background for beginning to address areas of greater complexity that will enable a fuller understanding of these important natural features. This review paper summarizes the principal features of mean and turbulent flow over alluvial sand dunes. Five areas are then highlighted and discussed as a possible focus for future research: (1) the influence of dune leeside angle upon flow processes in the dune wake and downstream flow field, (2) the influence of three-dimensionality in dune shape upon the generation of turbulence and distribution of bed shear stress, (3) flow field modification resulting from bed form superimposition and amalgamation, (4) the scale and topology of dune-related turbulence and its interactions with sediment transport and the flow surface, and (5) the influence of suspended sediment on the dune flow field and dune morphology.

402 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the downstream and vertical components of velocity at more than 1800 points over one dune wavelength and constructed a set of contour maps for all mean flow and turbulence parameters, which are assessed using higher moment measures and quadrant analysis.
Abstract: Detailed measurements of flow velocity and its turbulent fluctuation were obtained over fixed, two-dimensional dunes in a laboratory channel. Laser Doppler anemometry was used to measure the downstream and vertical components of velocity at more than 1800 points over one dune wavelength. The density of the sampling grid allowed construction of a unique set of contour maps for all mean flow and turbulence parameters, which are assessed using higher moment measures and quadrant analysis. These flow field maps illustrate that: (1) the time-averaged downstream and vertical velocities agree well with previous studies of quasi-equilibrium flow over fixed and mobile bedforms and show a remarkable symmetry from crest to crest; (2) the maximum root-mean-square (RMS) of the downstream velocity values occur at and just downstream of flow reattachment and within the flow separation cell; (3) the maximum vertical RMS values occur within and above the zone of flow separation along the shear layer and this zone advects and diffuses downstream, extending almost to the next crest; (4) positive downstream skewness values occur within the separation cell, whereas positive vertical skewness values are restricted to the shear layer; (5) the highest Reynolds stresses are located within the zone of flow separation and along the shear layer; (6) high-magnitude, high-frequency quadrant-2 events (‘ejections’) are concentrated along the shear layer (Kelvin-Helmholtz instabilities) and dominate the contribution to the local Reynolds stress; and (7) high-magnitude, high-frequency quadrant-4 events occur bounding the separation zone, near reattachment and close to the dune crest, and are significant contributors to the local Reynolds stress at each location. These data demonstrate that the turbulence structure associated with dunes is controlled intrinsically by the formation, magnitude and downstream extent of the flow separation zone and resultant shear layer. Furthermore, the origin of dune-related macroturbulence lies in the dynamics of the shear layer rather than classical turbulent boundary layer bursting. The fluid dynamic distinction between dunes and ripples is reasoned to be linked to the velocity differential across the shear layer and hence the magnitude of the Kelvin-Helmholtz instabilities, which are both greater for dunes than ripples. These instabilities control the local flow and turbulence structure and dictate the modes of sediment entrainment and their transport rates.

385 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Structure-from-Motion (SfM) method as mentioned in this paper solves the camera pose and scene geometry simultaneously and automatically, using a highly redundant bundle adjustment based on matching features in multiple overlapping, offset images.

2,901 citations

Journal ArticleDOI

1,571 citations

Journal ArticleDOI
TL;DR: A simple classification of sedimentary density flows, based on physical flow properties and grain-support mechanisms, and briefly discusses the likely characteristics of the deposited sediments is presented in this paper.
Abstract: The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post-depositional consolidation and soft-sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain-support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non-cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle-support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain-to-grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle-support mechanism depends upon flow conditions, particle concentration, grain-size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse-grain tail (or dense-grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large-scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensuBagnold, 1962), in which fluid turbulence is the main particle-support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge-like flows and quasi-steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge-like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi-steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening-up units capped by fining-up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near-steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co-exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.

1,454 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the development of ideas in the fields of geomorphology/Quaternary geology vs. sedimentary geologies is provided, and key processes that operate to produce alluvial stratigraphic records over time-scales of 103−106 years.
Abstract: Summary Fluvial landforms and deposits provide one of the most readily studied Quaternary continental records, and alluvial strata represent an important component in most ancient continental interior and continental margin successions. Moreover, studies of the long-term dynamics of fluvial systems and their responses to external or ‘allogenic' controls, can play important roles in research concerning both global change and sequence-stratigraphy, as well as in studies of the dynamic interactions between tectonic activity and surface processes. These themes were energized in the final decades of the twentieth century, and may become increasingly important in the first decades of this millennium. This review paper provides a historical perspective on the development of ideas in the fields of geomorphology/Quaternary geology vs. sedimentary geology, and then summarizes key processes that operate to produce alluvial stratigraphic records over time-scales of 103−106 years. Of particular interest are changes in discharge regimes, sediment supply and sediment storage en route from source terrains to sedimentary basins, as well as changes in sea-level and the concept of accommodation. Late Quaternary stratigraphic records from the Loire (France), Mississippi (USA), Colorado (Texas, USA) and Rhine–Meuse (The Netherlands) Rivers are used to illustrate the influences of climate change on continental interior rivers, as well as the influence of interacting climate and sea-level change on continental margin systems. The paper concludes with a look forward to a bright future for studies of fluvial response to climate and sea-level change. At present, empirical field-based research on fluvial response to climate and sea-level change lags behind: (a) the global change community's understanding of the magnitude and frequency of climate and sea-level change; (b) the sequence-stratigraphic community's desire to interpret climate and, especially, sea-level change as forcing mechanisms; and (c) the modelling community's ability to generate numerical and physical models of surface processes and their stratigraphic results. A major challenge for the future is to catch up, which will require the development of more detailed and sophisticated Quaternary stratigraphic, sedimentological and geochronological frameworks in a variety of continental interior and continental margin settings. There is a particular need for studies that seek to document fluvial responses to allogenic forcing over both shorter (102−103 years) and longer (104−106 years) time-scales than has commonly been the case to date, as well as in larger river systems, from source to sink. Studies of Quaternary systems in depositional basin settings are especially critical because they can provide realistic analogues for interpretation of the pre-Quaternary rock record.

1,125 citations

01 Jan 1992
TL;DR: In this article, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames, which can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.
Abstract: To improve the performance of particle image velocimetry in measuring instantaneous velocity fields, direct cross-correlation of image fields can be used in place of auto-correlation methods of interrogation of double- or multiple-exposure recordings. With improved speed of photographic recording and increased resolution of video array detectors, cross-correlation methods of interrogation of successive single-exposure frames can be used to measure the separation of pairs of particle images between successive frames. By knowing the extent of image shifting used in a multiple-exposure and by a priori knowledge of the mean flow-field, the cross-correlation of different sized interrogation spots with known separation can be optimized in terms of spatial resolution, detection rate, accuracy and reliability.

1,101 citations