scispace - formally typeset
Search or ask a question
Author

James M. Wilson

Bio: James M. Wilson is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Genetic enhancement & Adeno-associated virus. The author has an hindex of 150, co-authored 1010 publications receiving 78686 citations. Previous affiliations of James M. Wilson include University of North Carolina at Chapel Hill & Children's Hospital of Philadelphia.


Papers
More filters
Journal ArticleDOI
TL;DR: Approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes are suggested.
Abstract: An important limitation that has emerged in the use of adenoviruses for gene therapy has been loss of recombinant gene expression that occurs concurrent with the development of pathology in the organ expressing the transgene. We have used liver-directed approaches to gene therapy in mice to study mechanisms that underlie the problems with transient expression and pathology that have characterized in vivo applications of first-generation recombinant adenoviruses (i.e., those deleted of E1a and E1b). Our data are consistent with the following hypothesis. Cells harboring the recombinant viral genome express the transgene as desired; however, low-level expression of viral genes also occurs. A virus-specific cellular immune response is stimulated that leads to destruction of the genetically modified hepatocytes, massive hepatitis, and repopulation of the liver with nontransgene-containing hepatocytes. These findings suggest approaches for improving recombinant adenoviruses that are based on further crippling the virus to limit expression of nondeleted viral genes.

1,691 citations

Journal ArticleDOI
TL;DR: Vectors based on AAV7 and AAV8 should be considered for human gene therapy because of low reactivity to antibodies directed to human AAVs and because gene transfer efficiency in muscle was similar to that obtained with the best known serotype, whereas, in liver, gene transfer was substantially higher than previously described.
Abstract: Tissues from rhesus monkeys were screened by PCR for the presence of sequences homologous to known adeno-associated virus (AAV) serotypes 1-6. DNA spanning entire rep-cap ORFs from two novel AAVs, called AAV7 and AAV8, were isolated. Sequence comparisons among these and previously described AAVs revealed the greatest divergence in capsid proteins. AAV7 and AAV8 were not neutralized by heterologous antisera raised to the other serotypes. Neutralizing antibodies to AAV7 and AAV8 were rare in human serum and, when present, were low in activity. Vectors formed with capsids from AAV7 and AAV8 were generated by using rep and inverted terminal repeats (ITRs) from AAV2 and were compared with similarly constructed vectors made from capsids of AAV1, AAV2, and AAV5. Murine models of skeletal muscle and liver-directed gene transfer were used to evaluate relative vector performance. AAV7 vectors demonstrated efficiencies of transgene expression in skeletal muscle equivalent to that observed with AAV1, the most efficient known serotype for this application. In liver, transgene expression was 10- to 100-fold higher with AAV8 than observed with other serotypes. This improved efficiency correlated with increased persistence of vector DNA and higher number of transduced hepatocytes. The efficiency of AAV8 vector for liver-directed gene transfer of factor IX was not impacted by preimmunization with the other AAV serotypes. Vectors based on these novel, nonhuman primate AAVs should be considered for human gene therapy because of low reactivity to antibodies directed to human AAVs and because gene transfer efficiency in muscle was similar to that obtained with the best known serotype, whereas, in liver, gene transfer was substantially higher than previously described.

1,573 citations

Journal ArticleDOI
TL;DR: The death of an 18-year-old male with partial ornithine transcarbamylase (OTC) deficiency who participated in a pilot (safety) study of gene therapy points to the limitations of animal studies in predicting human responses, the steep toxicity curve for replication defective adenovirus vectors, substantial subject-to-subject variation in host responses to systemically administered vectors, and the need for further study of the immune response to these vectors.

1,382 citations

Journal ArticleDOI
TL;DR: This study has used mice deficient in immunological effector functions in combination with adoptive and passive transfer techniques to define antigen-specific cellular and humoral immune responses that underlie immunological barriers to gene therapy of cystic fibrosis.
Abstract: Recombinant adenoviruses are an attractive vehicle for gene therapy to the lung in the treatment of cystic fibrosis (CF). First-generation viruses deleted of E1a and E1b transduce genes into airway epithelial cells in vivo; however, expression of the transgene is transient and associated with substantial inflammatory responses, and gene transfer is significantly reduced following a second administration of the virus. In this study, we have used mice deficient in immunological effector functions in combination with adoptive and passive transfer techniques to define antigen-specific cellular and humoral immune responses that underlie these important limitations. Our studies indicate that major histocompatibility complex class I-restricted CD8+ cytotoxic T lymphocytes are activated in response to newly synthesized antigens, leading to destruction of virus infected cells and loss of transgene expression. Major histocompatibility complex class II-associated presentation of exogenous viral antigens activates CD4+ T-helper (TH) cells of the TH1 subset and, to a lesser extent, of the TH2 subset. CD4+ cell-mediated responses are insufficient in the absence of cytotoxic T cells to completely eliminate transgene containing cells; however, they contribute to the formation of neutralizing antibodies in the airway which block subsequent adenovirus-mediated gene transfer. Definition of immunological barriers to gene therapy of cystic fibrosis should facilitate the design of rational strategies to overcome them.

1,164 citations

Journal ArticleDOI
21 Feb 1997-Cell
TL;DR: Data suggest that hBD-1 plays an important role in innate immunity that is compromised in CF by its salt-dependent inactivation, as well as the antimicrobial activity in airway surface fluid from non-CF grafts.

1,097 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Jan 2002-Nature
TL;DR: As the need for new antibiotics becomes more pressing, could the design of anti-infective drugs based on the design principles these molecules teach us?
Abstract: Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

7,657 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations

Journal ArticleDOI
01 Nov 2016-Europace
TL;DR: The Task Force for the management of atrial fibrillation of the European Society of Cardiology has been endorsed by the European Stroke Organisation (ESO).
Abstract: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC Endorsed by the European Stroke Organisation (ESO)

5,255 citations

01 Feb 2009
TL;DR: This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale, and what might be coming next.
Abstract: Secret History: Return of the Black Death Channel 4, 7-8pm In 1348 the Black Death swept through London, killing people within days of the appearance of their first symptoms. Exactly how many died, and why, has long been a mystery. This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale. And they ask, what might be coming next?

5,234 citations