scispace - formally typeset
Search or ask a question
Author

James McNames

Bio: James McNames is an academic researcher from Portland State University. The author has contributed to research in topics: Extended Kalman filter & Kalman filter. The author has an hindex of 38, co-authored 174 publications receiving 5011 citations. Previous affiliations of James McNames include Stanford University & Oregon Health & Science University.


Papers
More filters
Journal ArticleDOI
TL;DR: Assessment of the ability of an overnight ECG recording to distinguish between patients with and without apnoea and the best algorithms made use of frequency-domain features to estimate changes in heart rate and the effect of respiration on the ECG waveform.
Abstract: Sleep apnoea is a common disorder that is usually diagnosed through expensive studies conducted in sleep laboratories. Sleep apnoea is accompanied by a characteristic cyclic variation in heart rate or other changes in the waveform of the electrocardiogram (ECG). If sleep apnoea could be diagnosed using only the ECG, it could be possible to diagnose sleep apnoea automatically and inexpensively from ECG recordings acquired in the patient's home. This study had two parts. The first was to assess the ability of an overnight ECG recording to distinguish between patients with and without apnoea. The second was to assess whether the ECG could detect apnoea during each minute of the recording. An expert, who used additional physiological signals, assessed each of the recordings for apnoea. Research groups were invited to access data via the world-wide web and submit algorithm results to an international challenge linked to a conference. A training set of 35 recordings was made available for algorithm development, and results from a test set of 35 different recordings were made available for independent scoring. Thirteen algorithms were compared. The best algorithms made use of frequency-domain features to estimate changes in heart rate and the effect of respiration on the ECG waveform. Four of these algorithms achieved perfect scores of 100% in the first part of the study, and two achieved an accuracy of over 90% in the second part of the study.

428 citations

Journal ArticleDOI
TL;DR: This study combines kinematic models designed for control of robotic arms with state-space methods to continuously estimate the angles of human shoulder and elbow using two wearable inertial measurement units using the unscented Kalman filter.
Abstract: Wearable inertial systems have recently been used to track human movement in and outside of the laboratory. Continuous monitoring of human movement can provide valuable information relevant to individuals’ level of physical activity and functional ability. Traditionally, orientation has been calculated by integrating the angular velocity from gyroscopes. However, a small drift in the measured velocity leads to increasing integration error over time. To compensate that drift, complementary data from accelerometers are normally fused into tracking systems using the Kalman or extended Kalman filter. In this study, we combine kinematic models designed for control of robotic arms with state-space methods to continuously estimate the angles of human shoulder and elbow using two wearable inertial measurement units. We use the unscented Kalman filter to implement the nonlinear state-space inertial tracker. Shoulder and elbow joint angles obtained from 8 subjects using our inertial tracker were compared to the angles obtained from an optical-tracking reference system. On average, there was an RMS angle error of less than 8 $^\circ$ for all shoulder and elbow angles. The average correlation coefficient for all movement tasks among all subjects was $r\ge \hbox{0.95}$ . This agreement between our inertial tracker and the optical reference system was obtained for both regular and fast-speed movement of the arm. The same method can be used to track movement of other joints.

235 citations

Journal ArticleDOI
TL;DR: How rehabilitation professionals can use a new, body-worn sensor system to obtain objective measures of balance and gait to identify mild abnormalities not obvious with traditional clinical testing is introduced.
Abstract: This paper is a commentary to introduce how rehabilitation professionals can use a new, body-worn sensor system to obtain objective measures of balance and gait. Current assessments of balance and gait in clinical rehabilitation are largely limited to subjective scales, simple stop-watch measures, or complex, expensive machines not practical or largely available. Although accelerometers and gyroscopes have been shown to accurately quantify many aspects of gait and balance kinematics, only recently a comprehensive, portable system has become available for clinicians. By measuring body motion during tests that clinicians are already performing, such as the Timed Up and Go test (TUG) and the Clinical Test of Sensory Integration for Balance (CITSIB), the additional time for assessment is minimal. By providing instant analysis of balance and gait and comparing a patient's performance to age-matched control values, therapists receive an objective, sensitive screening profile of balance and gait strategies. This motion screening profile can be used to identify mild abnormalities not obvious with traditional clinical testing, measure small changes due to rehabilitation, and design customized rehabilitation programs for each individual's specific balance and gait deficits.

213 citations

Journal ArticleDOI
TL;DR: An automatic detection algorithm for pressure signals that locates the first peak following each heart beat that is called the percussion peak in intracranial pressure (ICP) signals and the systolic peak in arterial blood pressure (ABP) and pulse oximetry (SpO/sub 2/) signals is designed.
Abstract: Beat detection algorithms have many clinical applications including pulse oximetry, cardiac arrhythmia detection, and cardiac output monitoring. Most of these algorithms have been developed by medical device companies and are proprietary. Thus, researchers who wish to investigate pulse contour analysis must rely on manual annotations or develop their own algorithms. We designed an automatic detection algorithm for pressure signals that locates the first peak following each heart beat. This is called the percussion peak in intracranial pressure (ICP) signals and the systolic peak in arterial blood pressure (ABP) and pulse oximetry (SpO/sub 2/) signals. The algorithm incorporates a filter bank with variable cutoff frequencies, spectral estimates of the heart rate, rank-order nonlinear filters, and decision logic. We prospectively measured the performance of the algorithm compared to expert annotations of ICP, ABP, and SpO/sub 2/ signals acquired from pediatric intensive care unit patients. The algorithm achieved a sensitivity of 99.36% and positive predictivity of 98.43% on a dataset consisting of 42,539 beats.

204 citations

Journal ArticleDOI
TL;DR: A new fast nearest-neighbor algorithm is described that uses principal component analysis to build an efficient search tree that efficiently uses a depth-first search and a new elimination criterion.
Abstract: A new fast nearest-neighbor algorithm is described that uses principal component analysis to build an efficient search tree. At each node in the tree, the data set is partitioned along the direction of maximum variance. The search algorithm efficiently uses a depth-first search and a new elimination criterion. The new algorithm was compared to 16 other fast nearest-neighbor algorithms on three types of common benchmark data sets including problems from time series prediction and image vector quantization. This comparative study illustrates the strengths and weaknesses of all of the leading algorithms. The new algorithm performed very well on all of the data sets and was consistently ranked among the top three algorithms.

193 citations


Cited by
More filters
Journal ArticleDOI
02 Apr 2004-Science
TL;DR: A method for learning nonlinear systems, echo state networks (ESNs), which employ artificial recurrent neural networks in a way that has recently been proposed independently as a learning mechanism in biological brains is presented.
Abstract: We present a method for learning nonlinear systems, echo state networks (ESNs). ESNs employ artificial recurrent neural networks in a way that has recently been proposed independently as a learning mechanism in biological brains. The learning method is computationally efficient and easy to use. On a benchmark task of predicting a chaotic time series, accuracy is improved by a factor of 2400 over previous techniques. The potential for engineering applications is illustrated by equalizing a communication channel, where the signal error rate is improved by two orders of magnitude.

3,122 citations

Journal ArticleDOI
TL;DR: Current perspectives on the mechanisms that generate 24 h, short-term (<5 min), and ultra-short-term HRV are reviewed, and the importance of HRV, and its implications for health and performance are reviewed.
Abstract: Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.

3,046 citations

Journal ArticleDOI
TL;DR: The analysis of time series: An Introduction, 4th edn. as discussed by the authors by C. Chatfield, C. Chapman and Hall, London, 1989. ISBN 0 412 31820 2.
Abstract: The Analysis of Time Series: An Introduction, 4th edn. By C. Chatfield. ISBN 0 412 31820 2. Chapman and Hall, London, 1989. 242 pp. £13.50.

1,583 citations

01 Jan 2016
TL;DR: This application applied longitudinal data analysis modeling change and event occurrence will help people to enjoy a good book with a cup of tea in the afternoon instead of juggling with some harmful bugs inside their desktop computer.
Abstract: Thank you very much for downloading applied longitudinal data analysis modeling change and event occurrence. As you may know, people have search hundreds times for their chosen novels like this applied longitudinal data analysis modeling change and event occurrence, but end up in malicious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their desktop computer.

822 citations

Proceedings Article
21 Aug 2003
TL;DR: The accelerated k-means algorithm is shown how to accelerate dramatically, while still always computing exactly the same result as the standard algorithm, and is effective for datasets with up to 1000 dimensions, and becomes more and more effective as the number k of clusters increases.
Abstract: The k-means algorithm is by far the most widely used method for discovering clusters in data. We show how to accelerate it dramatically, while still always computing exactly the same result as the standard algorithm. The accelerated algorithm avoids unnecessary distance calculations by applying the triangle inequality in two different ways, and by keeping track of lower and upper bounds for distances between points and centers. Experiments show that the new algorithm is effective for datasets with up to 1000 dimensions, and becomes more and more effective as the number k of clusters increases. For k ≥ 20 it is many times faster than the best previously known accelerated k-means method.

801 citations