scispace - formally typeset
Search or ask a question
Author

James O'Gorman

Other affiliations: University College Dublin
Bio: James O'Gorman is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Laser & Semiconductor laser theory. The author has an hindex of 23, co-authored 109 publications receiving 1971 citations. Previous affiliations of James O'Gorman include University College Dublin.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals is reported.
Abstract: Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

549 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the generation of a highly coherent multicarrier signal that consists of eight clearly resolved 10.7 GHz coherent sidebands generated within 3 dB of the spectral envelope peak and with an extinction ratio in excess of 45 dB by gain switching a discrete mode (DM) laser.
Abstract: The authors demonstrate the generation of a highly coherent multicarrier signal that consists of eight clearly resolved 10.7-GHz coherent sidebands generated within 3 dB of the spectral envelope peak and with an extinction ratio in excess of 45 dB by gain switching a discrete mode (DM) laser. The generated spectral comb displays a corresponding picosecond pulse train at a repetition rate of 10.7 GHz with a pulse duration of 24 ps and a temporal jitter of ~450 fs. The optical spectra and associated pulses of the gain-switched DM laser are subsequently compared with a gain-switched distributed feedback (DFB) laser that generates a spectrum with no discernible sidebands and corresponding pulses with ~3 ps of temporal jitter. By means of external injection, the temporal jitter of the gain-switched DFB laser is then reduced to <; 1 ps, resulting in visible tones on the output spectrum. Finally, a nonlinear scheme is employed and initially tailored to compress the optical pulses, after which, the setup is slightly altered to expand the original frequency comb from the gain-switched DM laser.

147 citations

Journal ArticleDOI
TL;DR: In this article, an efficient continuous-wave (CW) thulium-doped fiber laser emitting at wavelength, /spl lambda/=2.31 /spl mu/m is reported.
Abstract: Operation of an efficient continuous-wave (CW) thulium-doped fiber laser emitting at wavelength, /spl lambda/=2.31 /spl mu/m is reported. The fiber laser parameters are optimized with a view to ultimately producing a compact and efficient laser source for optical absorption based gas sensing. A number of fiber laser configurations are investigated to assess their suitability for narrow linewidth, tunable fiber laser operation emitting around /spl lambda/=2.3 /spl mu/m, which is a wavelength region of significant importance for hydrocarbon gas monitoring. Tuning ranges of 140 nm and linewidths of less than 210 MHz have been demonstrated with lasers with bulk external tuning grating. Preliminary hydrocarbon gas sensing investigation confirm the potential of this source for detection of ppb gas concentrations.

116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the utility of near-infrared laser diodes for industrial applications in the area of toxic and trace-gas monitoring, using a distributed feedback (DFB) laser diode.
Abstract: Using wavelength-modulation spectroscopy and harmonic detection, we demonstrate, for the first time, direct optical detection of H 2 S by probing the v 1 + v 2 + v 3 combination absorption band centred at a wavelength λ = 1.59 μm using a distributed feedback (DFB) laser diode. A detection limit of less than 10 ppm at atmospheric pressure over a 5 m path length for the system is inferred from the measured detectivity at higher H 2 S concentrations. This detection sensitivity is at a level below the accepted 10 ppm safe-exposure limit. In addition, we demonstrate the capability of DFB laser diodes for multiple gas sensing in the λ = 1.575 μm region with the same laser by probing the 2v 1 + 2v 2 + v 3 absorption band of CO 2 , achieving a detection limit of about 100 ppm. These results demonstrate the utility of near-infrared laser diodes for industrial applications in the area of toxic- and trace-gas monitoring.

72 citations

Journal ArticleDOI
TL;DR: In this paper, a discrete mode (DM) laser was proposed, which is basically a ridge waveguide Fabry-Perot (FP) laser whose wavelength spectra has been modified to obtain a single mode operation.
Abstract: The authors present a novel, low cost laser transmitter for telecommunication systems. This device, called discrete mode (DM) laser, is basically a ridge waveguide Fabry-Perot (FP) laser, whose wavelength spectra has been modified to obtain a single mode operation. This is achieved by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity, by etching features into the ridge waveguide. Suitable positioning of these interfaces allows the mirror loss spectrum of an FP laser to be manipulated in order to achieve single longitudinal mode emission. The waveguide structure requires only a single growth stage and uses optical lithography to realise the ridge. In addition, the fabrication process is re-growth free. Despite this simple and low cost fabrication process, the DM lasers portray many advantages over the distributed feedback and distributed Bragg reflector lasers, such as very high side mode suppression ratio, stable operation over a large temperature range, narrow linewidth and low sensitivity to optical feedback.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the basis for each technique, recent developments in methods and performance limitations, and present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.
Abstract: The detection and measurement of gas concentrations using the characteristic optical absorption of the gas species is important for both understanding and monitoring a variety of phenomena from industrial processes to environmental change. This study reviews the field, covering several individual gas detection techniques including non-dispersive infrared, spectrophotometry, tunable diode laser spectroscopy and photoacoustic spectroscopy. We present the basis for each technique, recent developments in methods and performance limitations. The technology available to support this field, in terms of key components such as light sources and gas cells, has advanced rapidly in recent years and we discuss these new developments. Finally, we present a performance comparison of different techniques, taking data reported over the preceding decade, and draw conclusions from this benchmarking.

1,293 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Abstract: Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications. This article reviews recent progress in the use of silicon nitride and Hydex as non-silicon-based CMOS-compatible platforms for nonlinear optics. New capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement using these materials, and their potential future impact and challenges are covered.

1,218 citations

Journal ArticleDOI
TL;DR: The current state of optical methods for sensing oxygen have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields and a selection of specific applications of such sensors are given.
Abstract: We review the current state of optical methods for sensing oxygen. These have become powerful alternatives to electrochemical detection and in the process of replacing the Clark electrode in many fields. The article (with 694 references) is divided into main sections on direct spectroscopic sensing of oxygen, on absorptiometric and luminescent probes, on polymeric matrices and supports, on additives and related materials, on spectroscopic schemes for read-out and imaging, and on sensing formats (such as waveguide sensing, sensor arrays, multiple sensors and nanosensors). We finally discuss future trends and applications and summarize the properties of the most often used indicator probes and polymers. The ESI† (with 385 references) gives a selection of specific applications of such sensors in medicine, biology, marine and geosciences, intracellular sensing, aerodynamics, industry and biotechnology, among others.

847 citations

01 Jan 2001
TL;DR: The development of new highly nonlinear fibers, referred to as microstructured fibers, holey fibers and photonic crystal fibers, is the next generation technology for all-optical signal processing and biomedical applications as mentioned in this paper.
Abstract: * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers.New material focuses on the applications of highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear spectroscopy to biomedical imaging and frequency metrology. Technologies such as quantum cryptography, quantum computing, and quantum communications are also covered in a new chapter.This book will be an ideal reference for: RD scientists involved with research on fiber amplifiers and lasers; graduate students and researchers working in the fields of optical communications and quantum information. * The only book on how to develop nonlinear fiber optic applications* Two new chapters on the latest developments; Highly Nonlinear Fibers and Quantum Applications* Coverage of biomedical applications

595 citations