scispace - formally typeset
Search or ask a question
Author

James R. Akridge

Bio: James R. Akridge is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Absorption spectroscopy & Conductivity. The author has an hindex of 7, co-authored 10 publications receiving 1888 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries and present experimental evidence that selfdischarge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.
Abstract: This work reports a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries. The work encompasses theoretical models of the charge process, charge and discharge capacity, overcharge protection, thermal effects, self-discharge, and a comparison of simulated and experimental data. The work focused on the features of polysulfide chemistry and polysulfide interaction with the Li anode, a quantitative description of these phenomena, and their application to the development of a high-energy rechargeable battery. The objective is to present experimental evidence that self-discharge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.

1,793 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the application of sulfur chemistry and application to the development of rechargeable batteries with energy density exceeding 250 W h/kg, a rate capability comparable to or exceeding water-based electrolyte systems, and operation at temperatures up to −60 °C.

246 citations

Journal ArticleDOI
TL;DR: The absorption spectrum and magnetic susceptibility vs temperature of β-alumina doped with Mn, Co, and Ni were measured in this paper, where the bands in the absorption spectrum for each metal were assigned and Dq, B, and C were calculated where possible.

26 citations

Journal ArticleDOI
TL;DR: In this paper, the bulk and grain boundary conductivities of undoped and doped β-alumina have been analyzed using complex plane techniques, and all dopants, except for chromium which is present as Cr(IV), increased the bulk conductivity.

22 citations

Journal ArticleDOI
TL;DR: In this article, the absorption spectrum, emission spectrum, Mossbauer spectrum, and magnetic susceptibility for irondoped β-alumina have been recorded for samples prepared in oxidizing and reducing atmospheres.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI
TL;DR: The notion of sustainability is introduced through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability.
Abstract: Energy storage using batteries offers a solution to the intermittent nature of energy production from renewable sources; however, such technology must be sustainable. This Review discusses battery development from a sustainability perspective, considering the energy and environmental costs of state-of-the-art Li-ion batteries and the design of new systems beyond Li-ion. Images: batteries, car, globe: © iStock/Thinkstock.

5,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Abstract: The Li-S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g(-1) are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.

5,151 citations

Journal ArticleDOI

3,654 citations