scispace - formally typeset
Search or ask a question
Author

James R. Rice

Bio: James R. Rice is an academic researcher from Harvard University. The author has contributed to research in topics: Slip (materials science) & Fracture mechanics. The author has an hindex of 108, co-authored 278 publications receiving 68943 citations. Previous affiliations of James R. Rice include Massachusetts Institute of Technology & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
James R. Rice1
TL;DR: In this paper, an integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials.
Abstract: : An integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials. The integral may be evaluated almost by inspection for a few notch configurations. Also, for materials of the elastic- plastic type (treated through a deformation rather than incremental formulation) , with a linear response to small stresses followed by non-linear yielding, the integral may be evaluated in terms of Irwin's stress intensity factor when yielding occurs on a scale small in comparison to notch size. On the other hand, the integral may be expressed in terms of the concentrated deformation field in the vicinity of the notch tip. This implies that some information on strain concentrations is obtainable without recourse to detailed non-linear analyses. Such an approach is exploited here. Applications are made to: Approximate estimates of strain concentrations at smooth ended notch tips in elastic and elastic-plastic materials, A general solution for crack tip separation in the Barenblatt-Dugdale crack model, leading to a proof of the identity of the Griffith theory and Barenblatt cohesive theory for elastic brittle fracture and to the inclusion of strain hardening behavior in the Dugdale model for plane stress yielding, and An approximate perfectly plastic plane strain analysis, based on the slip line theory, of contained plastic deformation at a crack tip and of crack blunting.

7,468 citations

Journal ArticleDOI
TL;DR: In this article, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material.
Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

4,156 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the C rack-tip strain singularities with the aid of an energy line integral exhibiting path independence for all contours surrounding a crack tip in a two-dimensional deformation field of an elastic material (or elastic/plastic material treated by a deformation theory).
Abstract: C rack-tip strain singularities are investigated with the aid of an energy line integral exhibiting path independence for all contours surrounding a crack tip in a two-dimensional deformation field of an elastic material (or elastic/plastic material treated by a deformation theory). It is argued that the product of stress and strain exhibits a singularity varying inversely with distance from the tip in all materials. Corresponding near crack tip stress and strain fields are obtained for the plane straining of an incompressible elastic/plastic material hardening according to a power law. A noteworthy feature of the solution is the rapid rise of triaxial stress concentration above the flow stress with increasing values of the hardening exponent. Results are presented graphically for a range of hardening exponents, and the interpretation of the solution is aided by a discussion of analogous results in the better understood anti-plane strain case.

2,890 citations

Book
01 Jan 1974
TL;DR: In this paper, the authors proposed a method to detect cracks in a crack-penetrization model, based on the Griffith criterion, which is used to detect the presence of a crack at a crack tip.
Abstract: I Principles.- 1 Summary of basic problems and concepts.- 1.1 Introduction.- 1.2 A crack in a structure.- 1.3 The stress at a crack tip.- 1.4 The Griffith criterion.- 1.5 The crack opening displacement criterion.- 1.6 Crack propagation.- 1.7 Closure.- 2 Mechanisms of fracture and crack growth.- 2.1 Introduction.- 2.2 Cleavage fracture.- 2.3 Ductile fracture.- 2.4 Fatigue cracking.- 2.5 Environment assisted cracking.- 2.6 Service failure analysis.- 3 The elastic crack-tip stress field.- 3.1 The Airy stress function.- 3.2 Complex stress functions.- 3.3 Solution to crack problems.- 3.4 The effect of finite size.- 3.5 Special cases.- 3.6 Elliptical cracks.- 3.7 Some useful expressions.- 4 The crack tip plastic zone.- 4.1 The Irwin plastic zone correction.- 4.2 The Dugdale approach.- 4.3 The shape of the plastic zone.- 4.4 Plane stress versus plane strain.- 4.5 Plastic constraint factor.- 4.6 The thickness effect.- 5 The energy principle.- 5.1 The energy release rate.- 5.2 The criterion for crack growth.- 5.3 The crack resistance (R curve).- 5.4 Compliance.- 5.5 The J integral.- 5.6 Tearing modulus.- 5.7 Stability.- 6 Dynamics and crack arrest.- 6.1 Crack speed and kinetic energy.- 6.2 The dynamic stress intensity and elastic energy release rate.- 6.3 Crack branching.- 6.4 The principles of crack arrest.- 6.5 Crack arrest in practice.- 6.6 Dynamic fracture toughness.- 7 Plane strain fracture toughness.- 7.1 The standard test.- 7.2 Size requirements.- 7.3 Non-linearity.- 7.4 Applicability.- 8 Plane stress and transitional behaviour.- 8.1 Introduction.- 8.2 An engineering concept of plane stress.- 8.3 The R curve concept.- 8.4 The thickness effect.- 8.5 Plane stress testing.- 8.6 Closure.- 9 Elastic-plastic fracture.- 9.1 Fracture beyond general yield.- 9.2 The crack tip opening displacement.- 9.3 The possible use of the CTOD criterion.- 9.4 Experimental determination of CTOd.- 9.5 Parameters affecting the critical CTOD.- 9.6 Limitations, fracture at general yield.- 9.7 Use of the J integral.- 9.8 Limitations of the J integral.- 9.9 Measurement of JIc and JR.- 9.10 Closure.- 10 Fatigue crack propagation.- 10.1 Introduction.- 10.2 Crack growth and the stress intensity factor.- 10.3 Factors affecting crack propagation.- 10.4 Variable amplitude service loading.- 10.5 Retardation models.- 10.6 Similitude.- 10.7 Small cracks.- 10.8 Closure.- 11 Fracture resistance of materials.- 11.1 Fracture criteria.- 11.2 Fatigue cracking criteria.- 11.3 The effect of alloying and second phase particles.- 11.4 Effect of processing, anisotropy.- 11.5 Effect of temperature.- 11.6 Closure.- II Applications.- 12 Fail-safety and damage tolerance.- 12.1 Introduction.- 12.2 Means to provide fail-safety.- 12.3 Required information for fracture mechanics approach.- 12.4 Closure.- 13 Determination of stress intensity factors.- 13.1 Introduction.- 13.2 Analytical and numerical methods.- 13.3 Finite element methods.- 13.4 Experimental methods.- 14 Practical problems.- 14.1 Introduction.- 14.2 Through cracks emanating from holes.- 14.3 Corner cracks at holes.- 14.4 Cracks approaching holes.- 14.5 Combined loading.- 14.6 Fatigue crack growth under mixed mode loading.- 14.7 Biaxial loading.- 14.8 Fracture toughness of weldments.- 14.9 Service failure analysis.- 15 Fracture of structures.- 15.1 Introduction.- 15.2 Pressure vessels and pipelines.- 15.3 "Leak-bcfore-break" criterion.- 15.4 Material selection.- 15.5 The use of the J integral for structural analysis.- 15.6 Collapse analysis.- 15.7 Accuracy of fracture calculations.- 16 Stiffened sheet structures.- 16.1 Introduction.- 16.2 Analysis.- 16.3 Fatigue crack propagation.- 16.4 Residual strength.- 16.5 The R curve and the residual strength of stiffened panels.- 16.6 Other analysis methods.- 16.7 Crack arrest.- 16.8 Closure.- 17 Prediction of fatigue crack growth.- 17.1 Introduction.- 17.2 The load spectrum.- 17.3 Approximation of the stress spectrum.- 17.4 Generation of a stress history.- 17.5 Crack growth integration.- 17.6 Accuracy of predictions.- 17.7 Safety factors.- Author index.

2,539 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the hypothesis that localization of deformation into a shear band may be considered a result of an instability in the constitutive description of homogeneous deformation.
Abstract: T his paper investigates the hypothesis that localization of deformation into a shear band may be considered a result of an instability in the constitutive description of homogeneous deformation. General conditions for a bifurcation, corresponding to the localization of deformation into a planar band, are derived. Although the analysis is general and applications to other localization phenomena are noted, the constitutive relations which are examined in application of the criterion for localization are intended to model the behavior of brittle rock masses under compressive principal stresses. These relations are strongly pressure-sensitive since inelasticity results from frictional sliding on an array of fissures; the resulting inelastic response is dilatant, owing to uplift in sliding at asperities and to local tensile cracking from fissure tips. The appropriate constitutive descriptions involve non-normality of plastic strain increments to the yield hyper-surface. Also, it is argued that the subsequent yield surfaces will develop a vertex-like structure. Both of these features are shown to be destabilizing and to strongly influence the resulting predictions for localization by comparison to predictions based on classical plasticity idealizations, involving normality and smooth yield surfaces. These results seem widely applicable to discussions of the inception of rupture as a constitutive instability.

2,411 citations


Cited by
More filters
Journal ArticleDOI
James R. Rice1
TL;DR: In this paper, an integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials.
Abstract: : An integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials. The integral may be evaluated almost by inspection for a few notch configurations. Also, for materials of the elastic- plastic type (treated through a deformation rather than incremental formulation) , with a linear response to small stresses followed by non-linear yielding, the integral may be evaluated in terms of Irwin's stress intensity factor when yielding occurs on a scale small in comparison to notch size. On the other hand, the integral may be expressed in terms of the concentrated deformation field in the vicinity of the notch tip. This implies that some information on strain concentrations is obtainable without recourse to detailed non-linear analyses. Such an approach is exploited here. Applications are made to: Approximate estimates of strain concentrations at smooth ended notch tips in elastic and elastic-plastic materials, A general solution for crack tip separation in the Barenblatt-Dugdale crack model, leading to a proof of the identity of the Griffith theory and Barenblatt cohesive theory for elastic brittle fracture and to the inclusion of strain hardening behavior in the Dugdale model for plane stress yielding, and An approximate perfectly plastic plane strain analysis, based on the slip line theory, of contained plastic deformation at a crack tip and of crack blunting.

7,468 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

Journal ArticleDOI
TL;DR: In this article, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material.
Abstract: The fracture of ductile solids has frequently been observed to result from the large growth and coalescence of microscopic voids, a process enhanced by the superposition of hydrostatic tensile stresses on a plastic deformation field. The ductile growth of voids is treated here as a problem in continuum plasticity. First, a variational principle is established to characterize the flow field in an elastically rigid and incompressible plastic material containing an internal void or voids, and subjected to a remotely uniform stress and strain rate field. Then an approximate Rayleigh-Ritz procedure is developed and applied to the enlargement of an isolated spherical void in a nonhardening material. Growth is studied in some detail for the case of a remote tensile extension field with superposed hydrostatic stresses. The volume changing contribution to void growth is found to overwhelm the shape changing part when the mean remote normal stress is large, so that growth is essentially spherical. Further, it is found that for any remote strain rate field, the void enlargement rate is amplified over the remote strain rate by a factor rising exponentially with the ratio of mean normal stress to yield stress. Some related results are discussed, including the long cylindrical void considered by F.A. McClintock (1968, J. appl. Mech . 35 , 363), and an approximate relation is given to describe growth of a spherical void in a general remote field. The results suggest a rapidly decreasing fracture ductility with increasing hydrostatic tension.

4,156 citations

Book ChapterDOI
TL;DR: In this article, the authors describe the mixed mode cracking in layered materials and elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness, showing that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip.
Abstract: Publisher Summary This chapter describes the mixed mode cracking in layered materials. There is ample experimental evidence that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip. An unloaded crack subsequently subject to a combination of modes I and II will initiate growth by kinking in such a direction that the advancing tip is in mode I. The chapter also elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness. The competition between crack advance within the interface and kinking out of the interface depends on the relative toughness of the interface to that of the adjoining material. The interface stress intensity factors play precisely the same role as their counterparts in elastic fracture mechanics for homogeneous, isotropic solids. When an interface between a bimaterial system is actually a very thin layer of a third phase, the details of the cracking morphology in the thin interface layer can also play a role in determining the mixed mode toughness. The elasticity solutions for cracks in multilayers are also elaborated.

3,828 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations