scispace - formally typeset
Search or ask a question
Author

James S. Freudenberg

Bio: James S. Freudenberg is an academic researcher from University of Michigan. The author has contributed to research in topics: Sensitivity (control systems) & Control theory. The author has an hindex of 36, co-authored 161 publications receiving 5402 citations. Previous affiliations of James S. Freudenberg include Ford Motor Company & Newcastle University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors express limitations imposed by right half plane poles and zeros of the open-loop system directly in terms of the sensitivity and complementary sensitivity functions of the closed-loop systems.
Abstract: This paper expresses limitations imposed by right half plane poles and zeros of the open-loop system directly in terms of the sensitivity and complementary sensitivity functions of the closed-loop system. The limitations are determined by integral relationships which must be satisfied by these functions. The integral relationships are interpreted in the context of feedback design.

666 citations

Journal Article
TL;DR: In this paper, the authors studied the problem of feedback stabilization over a signal-to-noise ratio (SNR) constrained channel and showed that for either state feedback, or for output feedback delay-free, minimum phase plants, there are limitations on the ability to stabilize an unstable plant over an SNR constrained channel.
Abstract: There has recently been significant interest in feedback stabilization problems over communication channels, including several with bit rate limited feedback. Motivated by considering one source of such bit rate limits, we study the problem of stabilization over a signal-to-noise ratio (SNR) constrained channel. We discuss both continuous and discrete time cases, and show that for either state feedback, or for output feedback delay-free, minimum phase plants, there are limitations on the ability to stabilize an unstable plant over an SNR constrained channel. These limitations in fact match precisely those that might have been inferred by considering the associated ideal Shannon capacity bit rate over the same channel.

379 citations

Journal ArticleDOI
TL;DR: This work discusses both continuous and discrete time cases, and shows that for either state feedback, or for output feedback delay-free, minimum phase plants, there are limitations on the ability to stabilize an unstable plant over an SNR constrained channel.
Abstract: There has recently been significant interest in feedback stabilization problems with communication constraints including constraints on the available data rate. Signal-to-noise ratio (SNR) constraints are one way in which data-rate limits arise, and are the focus of this paper. In both continuous and discrete-time settings, we show that there are limitations on the ability to stabilize an unstable plant over a SNR constrained channel using finite-dimensional linear time invariant (LTI) feedback. In the case of state feedback, or output feedback with a delay-free, minimum phase plant, these limitations in fact match precisely those that might have been inferred by considering the associated ideal Shannon capacity data rate over the same channel. In the case of LTI output feedback, additional limitations are shown to apply if the plant is nonminimum phase. In this case, we show that for a continuous-time nonminimum phase plant, a periodic linear time varying feedback scheme with fast sampling may be used to recover the original SNR requirement at the cost of robustness properties. The proposed framework inherently captures channel noise effects in a simple formulation suited to conventional LTI control performance and robustness analysis, and has potential to handle time delays and bandwidth constraints in a variety of control over communication links problems.

372 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the steady-state optimization of engine emissions results in operating points where EGR and VGT actuators are in effect redundant in their effect on the variables that most directly affect the emissions.
Abstract: The emission control problem for an automotive direct injected compression ignition (diesel) engine equipped with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT) is considered The objective is to operate the engine to meet driver's torque demand and minimize NO/sub x/ emissions while at the same time avoiding visible smoke generation It is demonstrated that the steady-state optimization of engine emissions results in operating points where EGR and VGT actuators are in effect redundant in their effect on the variables that most directly affect the emissions A multivariable feedback controller is proposed which accounts for this actuator redundancy Furthermore, it coordinates the two actuators to fully utilize their joint effect on engine emission performance Experimental results confirm good response properties of the proposed controller

295 citations

Journal ArticleDOI
22 Jun 2012-PLOS ONE
TL;DR: It is argued that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.
Abstract: Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set, is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.

293 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: This work reviews several recent results on estimation, analysis, and controller synthesis for NCSs, and addresses channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts.
Abstract: Networked control systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators, and controllers is supported by a shared communication network. We review several recent results on estimation, analysis, and controller synthesis for NCSs. The results surveyed address channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts. The results are presented in a tutorial fashion, comparing alternative methodologies

3,748 citations

Book
05 Oct 1997
TL;DR: In this article, the authors introduce linear algebraic Riccati Equations and linear systems with Ha spaces and balance model reduction, and Ha Loop Shaping, and Controller Reduction.
Abstract: 1. Introduction. 2. Linear Algebra. 3. Linear Systems. 4. H2 and Ha Spaces. 5. Internal Stability. 6. Performance Specifications and Limitations. 7. Balanced Model Reduction. 8. Uncertainty and Robustness. 9. Linear Fractional Transformation. 10. m and m- Synthesis. 11. Controller Parameterization. 12. Algebraic Riccati Equations. 13. H2 Optimal Control. 14. Ha Control. 15. Controller Reduction. 16. Ha Loop Shaping. 17. Gap Metric and ...u- Gap Metric. 18. Miscellaneous Topics. Bibliography. Index.

3,471 citations

Book
01 Jun 1979
TL;DR: In this article, an augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems, with step-by-step explanations that show clearly how to make practical use of the material.
Abstract: This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material. The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the engineering properties of the regulator. Topics include degree of stability, phase and gain margin, tolerance of time delay, effect of nonlinearities, asymptotic properties, and various sensitivity problems. The third section explores state estimation and robust controller design using state-estimate feedback. Numerous examples emphasize the issues related to consistent and accurate system design. Key topics include loop-recovery techniques, frequency shaping, and controller reduction, for both scalar and multivariable systems. Self-contained appendixes cover matrix theory, linear systems, the Pontryagin minimum principle, Lyapunov stability, and the Riccati equation. Newly added to this Dover edition is a complete solutions manual for the problems appearing at the conclusion of each section.

3,254 citations