scispace - formally typeset
Search or ask a question
Author

James S. Sirkis

Other affiliations: Weatherford International
Bio: James S. Sirkis is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Optical fiber & Fiber optic sensor. The author has an hindex of 28, co-authored 98 publications receiving 2410 citations. Previous affiliations of James S. Sirkis include Weatherford International.


Papers
More filters
Journal ArticleDOI
TL;DR: An immunosensor using a long-period grating (LPG) was used for sensitive detection of antibody-antigen reactions and regeneration of the LPG surface via diethylamine treatment resulted in approximately 80% removal of bound antigen.
Abstract: An immunosensor using a long-period grating (LPG) was used for sensitive detection of antibody−antigen reactions. Goat anti-human IgG (antibody) was immobilized on the surface of the LPG, and detection of specific antibody−antigen binding was investigated. This sensor operates using total internal reflection where an evanescent field interacts with bound antibody immobilized over the grating region. The reaction between antibody and antigen altered the LPG transmission spectrum and was monitored in real time as a change in refractive index, thereby eliminating the need for labeling antigen molecules. Human IgG binding was observed to be concentration dependent over a range of 2−100 μg mL-1, and equilibrium bound antigen levels could be attained in ∼5 min using an initial rate determination. Binding specificity was confirmed using human interleukin-2 and bovine serum albumin as controls, and nonspecific adsorption of proteins did not significantly interfere with detection of binding. Antigen detection in a...

188 citations

Patent
31 Jul 1998
TL;DR: In this article, a fiber optic shape measurement system using Bragg grating sensor technology and time, spatial, and wavelength division multiplexing was proposed to produce a plurality of strain measurements along one fiber path.
Abstract: A fiber optic measurement system capable of greatly improving the cost, complexity, and efficiency with which flexible body shape estimates are made. The fiber optic shape measurement system uses Bragg grating sensor technology and time, spatial, and wavelength division multiplexing, to produce a plurality of strain measurements along one fiber path. Using a plurality of fibers, shape determination of the body and the tow cable can be made with minimal ambiguity. Also disclosed is a method to resolve the body shape based on strain-to-shape structural analysis. Possible applications include, but are not limited to, sensing the shape and position of flexible bodies, aid in improving the efficiency of existing acoustic surveying processing techniques, and related applications in geophysical prospecting.

168 citations

Journal ArticleDOI
TL;DR: In this paper, a unified theory that relates optical phase changes to applied strain and temperature fields in structurally embedded interferometric optical fiber sensors of all types, as applied to Mach-Zehnder, Michelson, intrinsic and extrinsic Fabry-Perot, polarimetric, dual-mode, and Bragg grating sensors, with resistance strain gauge concepts and the theory of elasticity solutions, is theoretically explored.
Abstract: Using the unified theory that relates optical phase changes to applied strain and temperature fields in structurally embedded interferometric optical fiber sensors of all types, as applied to Mach-Zehnder, Michelson, intrinsic and extrinsic Fabry-Perot, polarimetric, dual-mode, and Bragg grating sensors, with resistance strain gauge concepts and the theory of elasticity solutions, the response of optical fiber sensors that are embedded in transversely isotropic composite materials is theoretically explored. The concepts of transverse strain sensitivity and thermal apparent strain are carefully defined for embedded optical fiber sensors, and it is found that errors resulting from these effects completely dominate the desired sensor response for all sensors except the extrinsic Fabry-Perot. Conditions that minimize these errors are presented. The theory of elasticity solutions used in this analysis encompasses six different thermomechanical loading conditions. Comparisons to Buffer and Hocker's model are also presented.

157 citations

Journal ArticleDOI
TL;DR: A description and demonstration of a fiber interferometer that uses a short segment of silica hollow-core fiber spliced between two sections of single-mode fiber to form a mechanically robust in-line cavity are presented.
Abstract: A description and demonstration of a fiber interferometer that uses a short segment of silica hollow-core fiber spliced between two sections of single-mode fiber to form a mechanically robust in-line cavity are presented. The hollow-core fiber is specifically manufactured to have an outer diameter that is equal to the outer diameter of the single-mode lead fibers, thereby combining the best qualities of existing intrinsic and extrinsic Fabry–Perot sensors. A dynamic strain resolution of ∼22n∊/Hz at frequencies of >5 Hz with a sensor gauge length of 137 μm is demonstrated.

116 citations

Patent
03 Apr 2002
TL;DR: In this article, a dynamic optical filter is provided to selectively attenuate or filter a wavelength band of light (i.e., optical channel(s)) or a group(s) of wavelength bands of an optical WDM input signal).
Abstract: An dynamic optical filter 10 is provided to selectively attenuate or filter a wavelength band(s) of light (i.e., optical channel(s)) or a group(s) of wavelength bands of an optical WDM input signal 12. The optical filter is controllable or programmable to selectively provide a desired filter function. The optical filter 10 includes a spatial light modulator 36, which comprises an array of micromirrors 52 effectively forms a two-dimensional diffraction grating mounted in a retro-reflecting configuration. Each optical channel 14 is dispersed separately or overlappingly onto the array of micro-mirrors 52 along a spectral axis or direction 55 such that each optical channel or group of optical channels are spread over a plurality of micro-mirrors to effectively pixelate each of the optical channels or input signal. Each channel 14 or group of channels may be selectively attenuated by flipping or tilting a selected number of micro-mirrors to thereby deflect a portion of the incident radiation away from the return optical path. The micro-mirrors operate in a digital manner by flipping between a first and second position in response to a control signal 56 provided by a controller 58 in accordance with an attenuation algorithm and an input command 60. The switching algorithm may provide a bit (or pixel) map or look-up table indicative of the state of each of the micro-mirrors 52 of the array to selectively attenuate the input signal and provide a modified output signal 38 at optical fiber 40.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Journal ArticleDOI
TL;DR: An overview of 3-D shape measurement using various optical methods, and a focus on structured light tech- niques where various optical configurations, image acquisition technology, data postprocessing and analysis methods and advantages and limitations are presented.
Abstract: We first provide an overview of 3-D shape measurement us- ing various optical methods. Then we focus on structured light tech- niques where various optical configurations, image acquisition tech- niques, data postprocessing and analysis methods and advantages and limitations are presented. Several industrial application examples are presented. Important areas requiring further R&D are discussed. Finally, a comprehensive bibliography on 3-D shape measurement is included, although it is not intended to be exhaustive. © 2000 Society of Photo-Optical Instrumentation Engineers. (S0091-3286(00)00101-X)

1,481 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed recent research on fiber optic long-period gratings (LPGs) with emphasis placed upon the characteristics of LPGs that make them attractive for applications in sensing strain, temperature, bend radius and external index of refraction.
Abstract: Recent research on fibre optic long-period gratings (LPGs) is reviewed with emphasis placed upon the characteristics of LPGs that make them attractive for applications in sensing strain, temperature, bend radius and external index of refraction. The prospect of the development of multi-parameter sensors, capable of simultaneously monitoring a number of these measurands will be discussed.

1,203 citations

Journal ArticleDOI
Yun-Jiang Rao1
TL;DR: In-fibre Bragg grating (FBG) sensors are one of the most exciting developments in the field of optical fiber sensors in recent years as discussed by the authors, and significant progress has been made in applications to strain and temperature measurements.
Abstract: In-fibre Bragg grating (FBG) sensors are one of the most exciting developments in the field of optical fibre sensors in recent years. Compared with conventional fibre-optic sensors, FBG sensors have a number of distinguishing advantages. Significant progress has been made in applications to strain and temperature measurements. FBG sensors prove to be one of the most promising candidates for fibre-optic smart structures. This article presents a comprehensive and systematic overview of FBG sensor technology regarding many aspects including sensing principles, properties, fabrication, interrogation and multiplexing of FBG sensors. It is anticipated that FBG sensor systems will be commercialized and widely applied in practice in the near future due to the maturity of economical production of FBGs and the availability of cost effective interrogation and multiplexing techniques.

1,170 citations