scispace - formally typeset
Search or ask a question
Author

James W. Lee

Bio: James W. Lee is an academic researcher from University of Oklahoma. The author has contributed to research in topics: Tornado & Tornado climatology. The author has an hindex of 1, co-authored 2 publications receiving 467 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the National Center for Atmospheric Research (NCAR)/United States National Centers for Environmental Prediction (NCEP) reanalysis system to create soundings and find environmental conditions associated with significant severe thunderstorms (hail at least 5 cm in diameter, wind gusts at least 120 km h � 1, or a tornado of at least F2 damage) and to discriminate between significant tornadic and non-tornadic thunderstorm environments in the eastern United States for the period 1997-1999.

528 citations


Cited by
More filters
Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations

Journal ArticleDOI
TL;DR: In this article, the authors show the results of a systematic search through seven full years of the TRMM database to find indicators of uncommonly intense storms, such as strong (> 40 dBZ) radar echoes extending to great heights, high lightning flash rates, and very low brightness temperatures at 37 and 85 GHz.
Abstract: The instruments on the Tropical Rainfall Measuring Mission (TRMM) satellite have been observing storms as well as rainfall since December 1997. This paper shows the results of a systematic search through seven full years of the TRMM database to find indicators of uncommonly intense storms. These include strong (> 40 dBZ) radar echoes extending to great heights, high lightning flash rates, and very low brightness temperatures at 37 and 85 GHz. These are used as proxy variables, indicating powerful convective updrafts. The main physical principles supporting this assertion involve the effects of such updrafts in producing and lofting large ice particles high into the storm, where TRMM's radar easily detects them near storm top. TRMM's passive microwave radiometer detects the large integrated ice water path as very low brightness temperatures, while high lightning flash rates are a physically related but instrumentally independent indicator. The geographical locations of these very intense convective storms ...

789 citations

Journal ArticleDOI
TL;DR: The best estimate of the annual global LNOx nitrogen oxides nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this paper, implying larger flash-specific NOx emissions.
Abstract: . The knowledge of the lightning-induced nitrogen oxides (LNOx) source is important for understanding and predicting the nitrogen oxides and ozone distributions in the troposphere and their trends, the oxidising capacity of the atmosphere, and the lifetime of trace gases destroyed by reactions with OH. This knowledge is further required for the assessment of other important NOx sources, in particular from aviation emissions, the stratosphere, and from surface sources, and for understanding the possible feedback between climate changes and lightning. This paper reviews more than 3 decades of research. The review includes laboratory studies as well as surface, airborne and satellite-based observations of lightning and of NOx and related species in the atmosphere. Relevant data available from measurements in regions with strong LNOx influence are identified, including recent observations at midlatitudes and over tropical continents where most lightning occurs. Various methods to model LNOx at cloud scales or globally are described. Previous estimates are re-evaluated using the global annual mean flash frequency of 44±5 s−1 reported from OTD satellite data. From the review, mainly of airborne measurements near thunderstorms and cloud-resolving models, we conclude that a "typical" thunderstorm flash produces 15 (2–40)×1025 NO molecules per flash, equivalent to 250 mol NOx or 3.5 kg of N mass per flash with uncertainty factor from 0.13 to 2.7. Mainly as a result of global model studies for various LNOx parameterisations tested with related observations, the best estimate of the annual global LNOx nitrogen mass source and its uncertainty range is (5±3) Tg a−1 in this study. In spite of a smaller global flash rate, the best estimate is essentially the same as in some earlier reviews, implying larger flash-specific NOx emissions. The paper estimates the LNOx accuracy required for various applications and lays out strategies for improving estimates in the future. An accuracy of about 1 Tg a−1 or 20%, as necessary in particular for understanding tropical tropospheric chemistry, is still a challenging goal.

573 citations

Journal ArticleDOI
TL;DR: The state of knowledge regarding trends and an understanding of their causes for a specific subset of extreme weather and climate types is presented in this paper for severe convective storms (tornadoes, hailstorms, and severe thunderstorms).
Abstract: The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variab...

468 citations

Journal ArticleDOI
TL;DR: In this article, the authors use global climate models and a high-resolution regional climate model to examine the larger-scale (or "environmental") meteorological conditions that foster severe thunderstorm formation.
Abstract: Severe thunderstorms comprise an extreme class of deep convective clouds and produce high-impact weather such as destructive surface winds, hail, and tornadoes. This study addresses the question of how severe thunderstorm frequency in the United States might change because of enhanced global radiative forcing associated with elevated greenhouse gas concentrations. We use global climate models and a high-resolution regional climate model to examine the larger-scale (or “environmental”) meteorological conditions that foster severe thunderstorm formation. Across this model suite, we find a net increase during the late 21st century in the number of days in which these severe thunderstorm environmental conditions (NDSEV) occur. Attributed primarily to increases in atmospheric water vapor within the planetary boundary layer, the largest increases in NDSEV are shown during the summer season, in proximity to the Gulf of Mexico and Atlantic coastal regions. For example, this analysis suggests a future increase in NDSEV of 100% or more in locations such as Atlanta, GA, and New York, NY. Any direct application of these results to the frequency of actual storms also must consider the storm initiation.

331 citations