scispace - formally typeset
Search or ask a question
Author

James Z. Wang

Bio: James Z. Wang is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Image retrieval & Automatic image annotation. The author has an hindex of 57, co-authored 225 publications receiving 21890 citations. Previous affiliations of James Z. Wang include Penn State College of Information Sciences and Technology & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

3,433 citations

Journal ArticleDOI
TL;DR: SIMPLIcity (semantics-sensitive integrated matching for picture libraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation to improve retrieval.
Abstract: We present here SIMPLIcity (semantics-sensitive integrated matching for picture libraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. An image is represented by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. The system classifies images into semantic categories. Potentially, the categorization enhances retrieval by permitting semantically-adaptive searching methods and narrowing down the searching range in a database. A measure for the overall similarity between images is developed using a region-matching scheme that integrates properties of all the regions in the images. The application of SIMPLIcity to several databases has demonstrated that our system performs significantly better and faster than existing ones. The system is fairly robust to image alterations.

2,117 citations

Book ChapterDOI
TL;DR: The SIMPLIcity system represents an image by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location, which classifies images into categories intended to distinguish semantically meaningful differences.
Abstract: We present here SIMPLIcity (Semantics-sensitive Integrated Matching for Picture LIbraries), an image retrieval system using semantics classification and integrated region matching (IRM) based upon image segmentation. The SIMPLIcity system represents an image by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. The system classifies images into categories which are intended to distinguish semantically meaningful differences, such as textured versus nontextured, indoor versus outdoor, and graph versus photograph. Retrieval is enhanced by narrowing down the searching range in a database to a particular category and exploiting semantically-adaptive searching methods. A measure for the overall similarity between images, the IRM distance, is defined by a region-matching scheme that integrates properties of all the regions in the images. This overall similarity approach reduces the adverse effect of inaccurate segmentation, helps to clarify the semantics of a particular region, and enables a simple querying interface for region-based image retrieval systems. The application of SIMPLIcity to a database of about 200,000 general-purpose images demonstrates accurate retrieval at high speed. The system is also robust to image alterations.

1,475 citations

Journal ArticleDOI
TL;DR: This paper implemented and tested the ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 different concepts, each with about 40 training images and demonstrated the good accuracy of the system and its high potential in linguistic indexing of photographic images.
Abstract: Automatic linguistic indexing of pictures is an important but highly challenging problem for researchers in computer vision and content-based image retrieval. In this paper, we introduce a statistical modeling approach to this problem. Categorized images are used to train a dictionary of hundreds of statistical models each representing a concept. Images of any given concept are regarded as instances of a stochastic process that characterizes the concept. To measure the extent of association between an image and the textual description of a concept, the likelihood of the occurrence of the image based on the characterizing stochastic process is computed. A high likelihood indicates a strong association. In our experimental implementation, we focus on a particular group of stochastic processes, that is, the two-dimensional multiresolution hidden Markov models (2D MHMMs). We implemented and tested our ALIP (Automatic Linguistic Indexing of Pictures) system on a photographic image database of 600 different concepts, each with about 40 training images. The system is evaluated quantitatively using more than 4,600 images outside the training database and compared with a random annotation scheme. Experiments have demonstrated the good accuracy of the system and its high potential in linguistic indexing of photographic images.

1,163 citations

Book ChapterDOI
07 May 2006
TL;DR: This paper treats the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source and extracts certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images.
Abstract: Aesthetics, in the world of art and photography, refers to the principles of the nature and appreciation of beauty Judging beauty and other aesthetic qualities of photographs is a highly subjective task Hence, there is no unanimously agreed standard for measuring aesthetic value In spite of the lack of firm rules, certain features in photographic images are believed, by many, to please humans more than certain others In this paper, we treat the challenge of automatically inferring aesthetic quality of pictures using their visual content as a machine learning problem, with a peer-rated online photo sharing Website as data source We extract certain visual features based on the intuition that they can discriminate between aesthetically pleasing and displeasing images Automated classifiers are built using support vector machines and classification trees Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings The work attempts to explore the relationship between emotions which pictures arouse in people, and their low-level content Potential applications include content-based image retrieval and digital photography

1,008 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Jun 2010
TL;DR: A brief overview of clustering is provided, well known clustering methods are summarized, the major challenges and key issues in designing clustering algorithms are discussed, and some of the emerging and useful research directions are pointed out.
Abstract: Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into a system of ranked taxa: domain, kingdom, phylum, class, etc. Cluster analysis is the formal study of methods and algorithms for grouping, or clustering, objects according to measured or perceived intrinsic characteristics or similarity. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes data clustering (unsupervised learning) from classification or discriminant analysis (supervised learning). The aim of clustering is to find structure in data and is therefore exploratory in nature. Clustering has a long and rich history in a variety of scientific fields. One of the most popular and simple clustering algorithms, K-means, was first published in 1955. In spite of the fact that K-means was proposed over 50 years ago and thousands of clustering algorithms have been published since then, K-means is still widely used. This speaks to the difficulty in designing a general purpose clustering algorithm and the ill-posed problem of clustering. We provide a brief overview of clustering, summarize well known clustering methods, discuss the major challenges and key issues in designing clustering algorithms, and point out some of the emerging and useful research directions, including semi-supervised clustering, ensemble clustering, simultaneous feature selection during data clustering, and large scale data clustering.

6,601 citations

Book ChapterDOI
15 Sep 2008
TL;DR: Cluster analysis as mentioned in this paper is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics, which is one of the most fundamental modes of understanding and learning.
Abstract: The practice of classifying objects according to perceived similarities is the basis for much of science. Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms in to taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping objects according to measured or perceived intrinsic characteristics. Cluster analysis does not use category labels that tag objects with prior identifiers, i.e., class labels. The absence of category information distinguishes cluster analysis (unsupervised learning) from discriminant analysis (supervised learning). The objective of cluster analysis is to simply find a convenient and valid organization of the data, not to establish rules for separating future data into categories.

4,255 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations