scispace - formally typeset
Search or ask a question
Author

Jamie Case

Bio: Jamie Case is an academic researcher from Scripps Health. The author has contributed to research in topics: Progenitor cell & CD34. The author has an hindex of 22, co-authored 72 publications receiving 2703 citations. Previous affiliations of Jamie Case include Indiana University – Purdue University Indianapolis & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that CD34+AC133+VEGFR-2+ cells are HPCs that do not yield EC progeny, and the biological mechanism for their correlation with cardiovascular disease needs to be reexamined.

555 citations

Journal ArticleDOI
TL;DR: The role of EPCs in vascular biology is still a subject of much discussion as discussed by the authors, however, the lack of a unique EPC marker, identification challenges related to the paucity of ECs in the circulation, and the important phenotypical and functional overlap between EPC, haematopoietic cells and mature ECs are discussed.
Abstract: In the past decade, researchers have gained important insights on the role of bone marrow (BM)-derived cells in adult neovascularization. A subset of BM-derived cells, called endothelial progenitor cells (EPCs), has been of particular interest, as these cells were suggested to home to sites of neovascularization and neoendothelialization and differentiate into endothelial cells (ECs) in situ, a process referred to as postnatal vasculogenesis. Therefore, EPCs were proposed as a potential regenerative tool for treating human vascular disease and a possible target to restrict vessel growth in tumour pathology. However, conflicting results have been reported in the field, and the identification, characterization, and exact role of EPCs in vascular biology is still a subject of much discussion. The focus of this review is on the controversial issues in the field of EPCs which are related to the lack of a unique EPC marker, identification challenges related to the paucity of EPCs in the circulation, and the important phenotypical and functional overlap between EPCs, haematopoietic cells and mature ECs. We also discuss our recent findings on the origin of endothelial outgrowth cells (EOCs), showing that this in vitro defined EC population does not originate from circulating CD133(+) cells or CD45(+) haematopoietic cells.

521 citations

Journal ArticleDOI
01 Jun 2007-Leukemia
TL;DR: This review will attempt to outline the definition of EPCs from some of the most widely cited published reports in an effort to provide a framework for understanding subsequent studies in this rapidly evolving field.
Abstract: Since 1997, postnatal vasculogenesis has been purported to be an important mechanism for neoangiogenesis via bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs). Based on this paradigm, EPCs have been extensively studied as biomarkers to assess severity of cardiovascular disease and as a cell-based therapy for several human cardiovascular disorders. In the majority of studies to date, EPCs were identified and enumerated by two primary methodologies; EPCs were obtained and quantified following in vitro cell culture, or EPCs were identified and enumerated by flow cytometry. Both methods have proven controversial. This review will attempt to outline the definition of EPCs from some of the most widely cited published reports in an effort to provide a framework for understanding subsequent studies in this rapidly evolving field. We will focus this review on studies that used cell culture techniques to define EPCs.

310 citations

Journal ArticleDOI
TL;DR: Two populations of circulating endothelial cells, including the functionally characterized ECFC, are now identifiable in human cord blood and peripheral blood by PFC.
Abstract: Objective— We sought to identify and characterize 2 distinct populations of bona fide circulating endothelial cells, including the endothelial colony-forming cell (ECFC), by polychromatic flow cytometry (PFC), colony assays, immunomagnetic selection, and electron microscopy. Methods and Results— Mononuclear cells from human umbilical cord blood and peripheral blood were analyzed using our recently published PFC protocol. A population of cells containing both ECFCs and mature circulating endothelial cells was determined by varying expressions of CD34, CD31, and CD146 but not AC133 and CD45. After immunomagnetic separation, these cells failed to form hematopoietic colonies, yet clonogenic endothelial colonies with proliferative potential were obtained, thus verifying their identity as ECFCs. The frequency of ECFCs were increased in cord blood and were extremely rare in the peripheral blood of healthy adults. We also detected another mature endothelial cell population in the circulation that was apoptotic. Finally, when comparing this new protocol with a prior method, we determined that the present protocol identifies circulating endothelial cells, whereas the earlier protocol identified extracellular vesicles. Conclusion— Two populations of circulating endothelial cells, including the functionally characterized ECFC, are now identifiable in human cord blood and peripheral blood by PFC.

164 citations

Journal ArticleDOI
TL;DR: The various cell and flow-cytometric techniques used to define and isolate EPCs from circulating blood and the current human and mouse genetic data, which offer insights into redox control in EPC biology and angiogenesis are discussed.
Abstract: Circulating endothelial progenitor cells (EPCs) in adult human peripheral blood were identified in 1997. Since their original identification, EPCs have been extensively studied as biomarkers to assess the risk of cardiovascular disease in human subjects and as a potential cell therapeutic for vascular regeneration. EPCs are exposed to oxidative stress during vascular injury as residents of blood vessel walls or as circulating cells homing to sites of neovascularization. Given the links between oxidative injury, endothelial cell dysfunction, and vascular disease, recent investigation has focused on the responses of EPCs to oxidant stress and the molecular mechanisms that control redox regulation in these specialized cells. In this review, we discuss the various cell and flow-cytometric techniques used to define and isolate EPCs from circulating blood and the current human and mouse genetic data, which offer insights into redox control in EPC biology and angiogenesis. Finally, we review how EPC res...

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.
Abstract: The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate along multiple lineage pathways. The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.

2,189 citations

Journal ArticleDOI
TL;DR: A thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Abstract: The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.

892 citations

Journal ArticleDOI
TL;DR: The results demonstrate for the first time that the majority of adipose-derived adherent CD34+ cells are resident pericytes that play a role in vascular stabilization by mutual structural and functional interaction with endothelial cells.
Abstract: It has been shown that stromal–vascular fraction isolated from adipose tissues contains an abundance of CD34+ cells. Histological analysis of adipose tissue revealed that CD34+ cells are widely distributed among adipocytes and are predominantly associated with vascular structures. The majority of CD34+ cells from freshly isolated stromal–vascular fraction were CD31−/CD144− and could be separated from a distinct population of CD34+/CD31+/CD144+ (endothelial) cells by differential attachment on uncoated plastic. The localization of CD34+ cells within adipose tissue suggested that the nonendothelial population of these cells occupied a pericytic position. Analysis of surface and intracellular markers of the freshly isolated CD34+/CD31−/CD144− adipose-derived stromal cells (ASCs) showed that >90% coexpress mesenchymal (CD10, CD13, and CD90), pericytic (chondroitin sulfate proteoglycan, CD140a, and CD140b), and smooth muscle (α-actin, caldesmon, and calponin) markers. ASCs demonstrated polygonal self-assembly ...

815 citations

Journal ArticleDOI
TL;DR: Some evidence is presented to consider emergence of a new paradigm for the process of neovascularization in the form of postnatal vasculogenesis and the role of endothelial progenitor cells in disease pathogenesis.
Abstract: From the paradigm shifting observations of Harvey, Malpighi, and van Leeuwenhoek, blood vessels have become recognized as distinct and dynamic tissue entities that merge with the heart to form a closed circulatory system.1 Vessel structures are comprised predominantly of a luminal layer of endothelial cells that is surrounded by some form of basement membrane, and mural cells (pericytes or vascular smooth muscle cells) that make up the vessel wall. In larger more complex vessel structures the vessel wall is composed of a complex interwoven matrix with nerve components. Understanding the cellular and molecular basis for the formation, remodeling, repair, and regeneration of the vasculature have been and continue to be popular areas for investigation. The endothelium has become a particularly scrutinized cell population with the recognition that these cells may play important roles in maintaining vascular homeostasis and in the pathogenesis of a variety of diseases.2 Although it has been known for several decades that some shed or extruded endothelial cells enter the circulation as apparent contaminants in the human blood stream,3 only more recent technologies have permitted the identification of not only senescent sloughed endothelial cells,4 but also endothelial progenitor cells (EPCs), which have been purported to represent a normal component of the formed elements of circulating blood5 and play roles in disease pathogenesis.6–9 Most citations refer to an article published in 1997 in which Asahara and colleagues isolated, characterized, and examined the in vivo function of putative EPCs from human peripheral blood as a major impetus for generating interest in the field.10 This seminal article presented some evidence to consider emergence of a new paradigm for the process of neovascularization in the form of postnatal vasculogenesis. Since publication of that article, interest in circulating endothelial cells, and particularly EPCs, has soared, …

766 citations

Journal ArticleDOI
TL;DR: The surprising contribution of granulocyte subsets and mast cells to early atherogenesis and subsequent plaque instability is highlighted, and the complex, double-edged role of monocyte, macrophage and dendritic-cell subsets through crosstalk with T cells and vascular progenitor cells is described.
Abstract: Chronic inflammation drives the development of atherosclerosis, and details regarding the involvement of different leukocyte subpopulations in the pathology of this disease have recently emerged. This Review highlights the surprising contribution of granulocyte subsets and mast cells to early atherogenesis and subsequent plaque instability, and describes the complex, double-edged role of monocyte, macrophage and dendritic-cell subsets through crosstalk with T cells and vascular progenitor cells. Improved understanding of the selective contributions of specific cell types to atherogenesis will pave the way for new targeted approaches to therapy.

753 citations