scispace - formally typeset
Search or ask a question
Author

Jamie D. Holladay

Bio: Jamie D. Holladay is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Steam reforming & Catalysis. The author has an hindex of 19, co-authored 41 publications receiving 3944 citations. Previous affiliations of Jamie D. Holladay include Breakthrough Institute & Technische Universität München.

Papers
More filters
Journal ArticleDOI
TL;DR: A review of technologies related to hydrogen production from both fossil and renewable biomass resources including reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase) and pyrolysis is presented in this article.

2,673 citations

Journal ArticleDOI
TL;DR: Analyses of developments in methanol steam reforming in the context of PEM fuel cell power systems and reactor and system development and demonstration.
Abstract: Review article covering developments in methanol steam reforming in the context of PEM fuel cell power systems. Subjects covered include methanol background, use, and production, comparison to other fuels, power system considerations, militrary requirements, competing technologies, catalyst development, and reactor and system development and demonstration.

874 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of metal loading, preparation method, and crystallite size on performance for Ru-based catalysts in the selective methanation of CO in the presence of H 2 and CO 2.
Abstract: Selective CO methanation as a strategy for CO removal in fuel processing applications was investigated over Ru-based catalysts. Ru metal loading and crystallite size were shown to affect catalyst activity and selectivity. Even operating at a gas-hourly-space-velocity as high as 13,500 h −1 , a 3% Ru/Al 2 O 3 catalyst with a 34.2 nm crystallite was shown to be capable of reducing CO in a reformate to less than 100 ppm over a wide temperature range from 240 to 280 °C, while keeping hydrogen consumption below 10%. We present the effects of metal loading, preparation method, and crystallite size on performance for Ru-based catalysts in the selective methanation of CO in the presence of H 2 and CO 2 .

148 citations

Journal ArticleDOI
TL;DR: This review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required.
Abstract: Sustainable energy generation calls for a shift away from centralized, high-temperature, energy-intensive processes to decentralized, low-temperature conversions that can be powered by electricity produced from renewable sources. Electrocatalytic conversion of biomass-derived feedstocks would allow carbon recycling of distributed, energy-poor resources in the absence of sinks and sources of high-grade heat. Selective, efficient electrocatalysts that operate at low temperatures are needed for electrocatalytic hydrogenation (ECH) to upgrade the feedstocks. For effective generation of energy-dense chemicals and fuels, two design criteria must be met: (i) a high H:C ratio via ECH to allow for high-quality fuels and blends and (ii) a lower O:C ratio in the target molecules via electrochemical decarboxylation/deoxygenation to improve the stability of fuels and chemicals. The goal of this review is to determine whether the following questions have been sufficiently answered in the open literature, and if not, what additional information is required:(1)What organic functionalities are accessible for electrocatalytic hydrogenation under a set of reaction conditions? How do substitutions and functionalities impact the activity and selectivity of ECH?(2)What material properties cause an electrocatalyst to be active for ECH? Can general trends in ECH be formulated based on the type of electrocatalyst?(3)What are the impacts of reaction conditions (electrolyte concentration, pH, operating potential) and reactor types?

143 citations

Journal ArticleDOI
TL;DR: In this paper, a micro-channel Pd/ZnO catalyst with effective heat exchange has been developed to evaluate catalyst performance and measure reaction kinetics, and the rate equation has been applied to a three-dimensional pseudo-homogeneous model to simulate temperature profiles in both microchannel and conventional fixed bed reactors.
Abstract: A microchannel reactor with effective heat exchange has been developed to evaluate catalyst performance and measure reaction kinetics. The reactor provides an isothermal environment for rate measurement of the endothermic methanol steam reforming reactions over a Pd/ZnO catalyst in a wide temperature range (160–310 °C). The apparent activation energy and rate equation have been determined to fit the power law expression: −r A (mmol/kg cat / s )=2.9047×10 10 e −94 800/RT p MeOH 0.715 p H 2 O 0.088 This result provides kinetic data for the design of a miniature fuel processor for small fuel cell applications. The rate equation has been applied to a three-dimensional pseudo-homogeneous model to simulate temperature profiles in both microchannel and conventional fixed bed reactors.

102 citations


Cited by
More filters
01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current state of knowledge and technology of hydrogen production by water electrolysis and identifies areas where R&D effort is needed in order to improve this technology.

2,396 citations

Journal ArticleDOI
TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Abstract: Water electrolysis is considered as the most promising technology for hydrogen production. Much research has been devoted to developing efficient electrocatalysts for hydrogen production via the hydrogen evolution reaction (HER) and oxygen production via the oxygen evolution reaction (OER). The optimum electrocatalysts can drive down the energy costs needed for water splitting via lowering the overpotential. A number of cobalt (Co)-based materials have been developed over past years as non-noble-metal heterogeneous electrocatalysts for HER and OER. Recent progress in this field is summarized here, especially highlighting several important bifunctional catalysts. Various approaches to improve or optimize the electrocatalysts are introduced. Finally, the current existing challenges and the future working directions for enhancing the performance of Co-implicated electrocatalysts are proposed.

1,963 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential is presented in this article.
Abstract: Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.

1,938 citations

Journal ArticleDOI
TL;DR: A comparative overview of the major hydrogen production methods is carried out in this article, where the process descriptions along with the technical and economic aspects of 14 different production methods are discussed, and the results regarding both the conventional and renewable methods are presented.
Abstract: Climate change and fossil fuel depletion are the main reasons leading to hydrogen technology. There are many processes for hydrogen production from both conventional and alternative energy resources such as natural gas, coal, nuclear, biomass, solar and wind. In this work, a comparative overview of the major hydrogen production methods is carried out. The process descriptions along with the technical and economic aspects of 14 different production methods are discussed. An overall comparison is carried out, and the results regarding both the conventional and renewable methods are presented. The thermochemical pyrolysis and gasification are economically viable approaches providing the highest potential to become competitive on a large scale in the near future while conventional methods retain their dominant role in H2 production with costs in the range of 1.34–2.27 $/kg. Biological methods appear to be a promising pathway but further research studies are needed to improve their production rates, while the low conversion efficiencies in combination with the high investment costs are the key restrictions for water-splitting technologies to compete with conventional methods. However, further development of these technologies along with significant innovations concerning H2 storage, transportation and utilization, implies the decrease of the national dependence on fossil fuel imports and green hydrogen will dominate over the traditional energy resources.

1,577 citations