scispace - formally typeset
Search or ask a question
Author

Jamie Liu

Bio: Jamie Liu is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Dram & CAS latency. The author has an hindex of 4, co-authored 7 publications receiving 1330 citations.

Papers
More filters
Journal ArticleDOI
09 Jun 2012
TL;DR: This paper proposes RAIDR (Retention-Aware Intelligent DRAM Refresh), a low-cost mechanism that can identify and skip unnecessary refreshes using knowledge of cell retention times and group DRAM rows into retention time bins and apply a different refresh rate to each bin.
Abstract: Dynamic random-access memory (DRAM) is the building block of modern main memory systems. DRAM cells must be periodically refreshed to prevent loss of data. These refresh operations waste energy and degrade system performance by interfering with memory accesses. The negative effects of DRAM refresh increase as DRAM device capacity increases. Existing DRAM devices refresh all cells at a rate determined by the leakiest cell in the device. However, most DRAM cells can retain data for significantly longer. Therefore, many of these refreshes are unnecessary. In this paper, we propose RAIDR (Retention-Aware Intelligent DRAM Refresh), a low-cost mechanism that can identify and skip unnecessary refreshes using knowledge of cell retention times. Our key idea is to group DRAM rows into retention time bins and apply a different refresh rate to each bin. As a result, rows containing leaky cells are refreshed as frequently as normal, while most rows are refreshed less frequently. RAIDR uses Bloom filters to efficiently implement retention time bins. RAIDR requires no modification to DRAM and minimal modification to the memory controller. In an 8-core system with 32 GB DRAM, RAIDR achieves a 74.6% refresh reduction, an average DRAM power reduction of 16.1%, and an average system performance improvement of 8.6% over existing systems, at a modest storage overhead of 1.25 KB in the memory controller. RAIDR's benefits are robust to variation in DRAM system configuration, and increase as memory capacity increases.

520 citations

Journal ArticleDOI
Yoongu Kim1, Vivek Seshadri1, Donghyuk Lee1, Jamie Liu1, Onur Mutlu1 
09 Jun 2012
TL;DR: Three new mechanisms (SALP-1, SALP-2, and MASA) mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank.
Abstract: Modern DRAMs have multiple banks to serve multiple memory requests in parallel. However, when two requests go to the same bank, they have to be served serially, exacerbating the high latency of off-chip memory. Adding more banks to the system to mitigate this problem incurs high system cost. Our goal in this work is to achieve the benefits of increasing the number of banks with a low cost approach. To this end, we propose three new mechanisms that overlap the latencies of different requests that go to the same bank. The key observation exploited by our mechanisms is that a modern DRAM bank is implemented as a collection of subarrays that operate largely independently while sharing few global peripheral structures. Our proposed mechanisms (SALP-1, SALP-2, and MASA) mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank. SALP-1 requires no changes to the existing DRAM structure and only needs reinterpretation of some DRAM timing parameters. SALP-2 and MASA require only modest changes (< 0.15% area overhead) to the DRAM peripheral structures, which are much less design constrained than the DRAM core. Evaluations show that all our schemes significantly improve performance for both single-core systems and multi-core systems. Our schemes also interact positively with application-aware memory request scheduling in multi-core systems.

338 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: A comprehensive quantitative study of retention behavior in modern DRAMs is presented, using a temperature-controlled FPGA-based testing platform, and two significant phenomena are observed: data pattern dependence, where the retention time of each DRAM cell is significantly affected by the data stored in other DRAM cells, and variable retention time, where some DRAM Cells' retention time changes unpredictably over time.
Abstract: DRAM cells store data in the form of charge on a capacitor. This charge leaks off over time, eventually causing data to be lost. To prevent this data loss from occurring, DRAM cells must be periodically refreshed. Unfortunately, DRAM refresh operations waste energy and also degrade system performance by interfering with memory requests. These problems are expected to worsen as DRAM density increases.The amount of time that a DRAM cell can safely retain data without being refreshed is called the cell's retention time. In current systems, all DRAM cells are refreshed at the rate required to guarantee the integrity of the cell with the shortest retention time, resulting in unnecessary refreshes for cells with longer retention times. Prior work has proposed to reduce unnecessary refreshes by exploiting differences in retention time among DRAM cells; however, such mechanisms require knowledge of each cell's retention time.In this paper, we present a comprehensive quantitative study of retention behavior in modern DRAMs. Using a temperature-controlled FPGA-based testing platform, we collect retention time information from 248 commodity DDR3 DRAM chips from five major DRAM vendors. We observe two significant phenomena: data pattern dependence, where the retention time of each DRAM cell is significantly affected by the data stored in other DRAM cells, and variable retention time, where the retention time of some DRAM cells changes unpredictably over time. We discuss possible physical explanations for these phenomena, how their magnitude may be affected by DRAM technology scaling, and their ramifications for DRAM retention time profiling mechanisms.

326 citations

Proceedings ArticleDOI
23 Feb 2013
TL;DR: This work introduces Tiered-Latency DRAM (TL-DRAM), which achieves both low latency and low cost-per-bit, and proposes mechanisms that use the low-latency segment as a hardware-managed or software-managed cache.
Abstract: The capacity and cost-per-bit of DRAM have historically scaled to satisfy the needs of increasingly large and complex computer systems. However, DRAM latency has remained almost constant, making memory latency the performance bottleneck in today's systems. We observe that the high access latency is not intrinsic to DRAM, but a trade-off made to decrease cost-per-bit. To mitigate the high area overhead of DRAM sensing structures, commodity DRAMs connect many DRAM cells to each sense-amplifier through a wire called a bitline. These bitlines have a high parasitic capacitance due to their long length, and this bitline capacitance is the dominant source of DRAM latency. Specialized low-latency DRAMs use shorter bitlines with fewer cells, but have a higher cost-per-bit due to greater sense-amplifier area overhead. In this work, we introduce Tiered-Latency DRAM (TL-DRAM), which achieves both low latency and low cost-per-bit. In TL-DRAM, each long bitline is split into two shorter segments by an isolation transistor, allowing one segment to be accessed with the latency of a short-bitline DRAM without incurring high cost-per-bit. We propose mechanisms that use the low-latency segment as a hardware-managed or software-managed cache. Evaluations show that our proposed mechanisms improve both performance and energy-efficiency for both single-core and multi-programmed workloads.

269 citations

Posted Content
TL;DR: This paper summarizes the idea of Subarray-Level Parallelism (SALP) in DRAM, which was published in ISCA 2012, and examines the work's significance and future potential, and proposes three new mechanisms, SALP-1, SALp-2, and MASA (Multitude of Activated Subarrays), to reduce the serialization of different requests that go to the same bank.
Abstract: This paper summarizes the idea of Subarray-Level Parallelism (SALP) in DRAM, which was published in ISCA 2012, and examines the work's significance and future potential. Modern DRAMs have multiple banks to serve multiple memory requests in parallel. However, when two requests go to the same bank, they have to be served serially, exacerbating the high latency of on-chip memory. Adding more banks to the system to mitigate this problem incurs high system cost. Our goal in this work is to achieve the benefits of increasing the number of banks with a low-cost approach. To this end, we propose three new mechanisms, SALP-1, SALP-2, and MASA (Multitude of Activated Subarrays), to reduce the serialization of different requests that go to the same bank. The key observation exploited by our mechanisms is that a modern DRAM bank is implemented as a collection of subarrays that operate largely independently while sharing few global peripheral structures. Our three proposed mechanisms mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank. SALP-1 requires no changes to the existing DRAM structure, and needs to only reinterpret some of the existing DRAM timing parameters. SALP-2 and MASA require only modest changes (< 0.15% area overhead) to the DRAM peripheral structures, which are much less design constrained than the DRAM core. Our evaluations show that SALP-1, SALP-2 and MASA significantly improve performance for both single-core systems (7%/13%/17%) and multi-core systems (15%/16%/20%), averaged across a wide range of workloads. We also demonstrate that our mechanisms can be combined with application-aware memory request scheduling in multicore systems to further improve performance and fairness.

4 citations


Cited by
More filters
Journal ArticleDOI
14 Jun 2014
TL;DR: This paper exposes the vulnerability of commodity DRAM chips to disturbance errors, and shows that it is possible to corrupt data in nearby addresses by reading from the same address in DRAM by activating the same row inDRAM.
Abstract: Memory isolation is a key property of a reliable and secure computing system--an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology scales down to smaller dimensions, it becomes more difficult to prevent DRAM cells from electrically interacting with each other. In this paper, we expose the vulnerability of commodity DRAM chips to disturbance errors. By reading from the same address in DRAM, we show that it is possible to corrupt data in nearby addresses. More specifically, activating the same row in DRAM corrupts data in nearby rows. We demonstrate this phenomenon on Intel and AMD systems using a malicious program that generates many DRAM accesses. We induce errors in most DRAM modules (110 out of 129) from three major DRAM manufacturers. From this we conclude that many deployed systems are likely to be at risk. We identify the root cause of disturbance errors as the repeated toggling of a DRAM row's wordline, which stresses inter-cell coupling effects that accelerate charge leakage from nearby rows. We provide an extensive characterization study of disturbance errors and their behavior using an FPGA-based testing platform. Among our key findings, we show that (i) it takes as few as 139K accesses to induce an error and (ii) up to one in every 1.7K cells is susceptible to errors. After examining various potential ways of addressing the problem, we propose a low-overhead solution to prevent the errors

999 citations

Journal ArticleDOI
TL;DR: This paper presents Ramulator, a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility, and is able to provide out-of-the-box support for a wide array of DRAM standards.
Abstract: Recently, both industry and academia have proposed many different roadmaps for the future of DRAM. Consequently, there is a growing need for an extensible DRAM simulator, which can be easily modified to judge the merits of today's DRAM standards as well as those of tomorrow. In this paper, we present Ramulator , a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility. Unlike existing simulators, Ramulator is based on a generalized template for modeling a DRAM system, which is only later infused with the specific details of a DRAM standard. Thanks to such a decoupled and modular design, Ramulator is able to provide out-of-the-box support for a wide array of DRAM standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, as well as some academic proposals (SALP, AL-DRAM, TL-DRAM, RowClone, and SARP). Importantly, Ramulator does not sacrifice simulation speed to gain extensibility: according to our evaluations, Ramulator is 2.5 $\times$ faster than the next fastest simulator. Ramulator is released under the permissive BSD license.

535 citations

Proceedings ArticleDOI
21 Apr 2013
TL;DR: It is shown that an optimized, equal capacity STT-RAM main memory can provide performance comparable to DRAM main memory, with an average 60% reduction in main memory energy.
Abstract: In this paper, we explore the possibility of using STT-RAM technology to completely replace DRAM in main memory. Our goal is to make STT-RAM performance comparable to DRAM while providing substantial power savings. Towards this goal, we first analyze the performance and energy of STT-RAM, and then identify key optimizations that can be employed to improve its characteristics. Specifically, using partial write and row buffer write bypass, we show that STT-RAM main memory performance and energy can be significantly improved. Our experiments indicate that an optimized, equal capacity STT-RAM main memory can provide performance comparable to DRAM main memory, with an average 60% reduction in main memory energy.

478 citations

Proceedings ArticleDOI
14 Oct 2017
TL;DR: Ambit is proposed, an Accelerator-in-Memory for bulk bitwise operations that largely exploits existing DRAM structure, and hence incurs low cost on top of commodity DRAM designs (1% of DRAM chip area).
Abstract: Many important applications trigger bulk bitwise operations, i.e., bitwise operations on large bit vectors. In fact, recent works design techniques that exploit fast bulk bitwise operations to accelerate databases (bitmap indices, BitWeaving) and web search (BitFunnel). Unfortunately, in existing architectures, the throughput of bulk bitwise operations is limited by the memory bandwidth available to the processing unit (e.g., CPU, GPU, FPGA, processing-in-memory).To overcome this bottleneck, we propose Ambit, an Accelerator-in-Memory for bulk bitwise operations. Unlike prior works, Ambit exploits the analog operation of DRAM technology to perform bitwise operations completely inside DRAM, thereby exploiting the full internal DRAM bandwidth. Ambit consists of two components. First, simultaneous activation of three DRAM rows that share the same set of sense amplifiers enables the system to perform bitwise AND and OR operations. Second, with modest changes to the sense amplifier, the system can use the inverters present inside the sense amplifier to perform bitwise NOT operations. With these two components, Ambit can perform any bulk bitwise operation efficiently inside DRAM. Ambit largely exploits existing DRAM structure, and hence incurs low cost on top of commodity DRAM designs (1% of DRAM chip area). Importantly, Ambit uses the modern DRAM interface without any changes, and therefore it can be directly plugged onto the memory bus.Our extensive circuit simulations show that Ambit works as expected even in the presence of significant process variation. Averaged across seven bulk bitwise operations, Ambit improves performance by 32X and reduces energy consumption by 35X compared to state-of-the-art systems. When integrated with Hybrid Memory Cube (HMC), a 3D-stacked DRAM with a logic layer, Ambit improves performance of bulk bitwise operations by 9.7X compared to processing in the logic layer of the HMC. Ambit improves the performance of three real-world data-intensive applications, 1) database bitmap indices, 2) BitWeaving, a technique to accelerate database scans, and 3) bit-vector-based implementation of sets, by 3X-7X compared to a state-of-the-art baseline using SIMD optimizations. We describe four other applications that can benefit from Ambit, including a recent technique proposed to speed up web search. We believe that large performance and energy improvements provided by Ambit can enable other applications to use bulk bitwise operations.CCS CONCEPTS• Computer systems organization → Single instruction, multiple data; • Hardware → Hardware accelerator; • Hardware → Dynamic memory;

444 citations

Proceedings ArticleDOI
07 Dec 2013
TL;DR: RowClone is proposed, a new and simple mechanism to perform bulk copy and initialization completely within DRAM — eliminating the need to transfer any data over the memory channel to perform such operations.
Abstract: Several system-level operations trigger bulk data copy or initialization. Even though these bulk data operations do not require any computation, current systems transfer a large quantity of data back and forth on the memory channel to perform such operations. As a result, bulk data operations consume high latency, bandwidth, and energy — degrading both system performance and energy efficiency. In this work, we propose RowClone, a new and simple mechanism to perform bulk copy and initialization completely within DRAM — eliminating the need to transfer any data over the memory channel to perform such operations. Our key observation is that DRAM can internally and efficiently transfer a large quantity of data (multiple KBs) between a row of DRAM cells and the associated row buffer. Based on this, our primary mechanism can quickly copy an entire row of data from a source row to a destination row by first copying the data from the source row to the row buffer and then from the row buffer to the destination row, via two back-to-back activate commands. This mechanism, which we call the Fast Parallel Mode of RowClone, reduces the latency and energy consumption of a 4KB bulk copy operation by 11.6× and 74.4×, respectively, and a 4KB bulk zeroing operation by 6.0× and 41.5×, respectively. To efficiently copy data between rows that do not share a row buffer, we propose a second mode of RowClone, the Pipelined Serial Mode, which uses the shared internal bus of a DRAM chip to quickly copy data between two banks. RowClone requires only a 0.01% increase in DRAM chip area. We quantitatively evaluate the benefits of RowClone by focusing on fork, one of the frequently invoked system calls, and five other copy and initialization intensive applications. Our results show that RowClone can significantly improve both single-core and multi-core system performance, while also significantly reducing main memory bandwidth and energy consumption.

385 citations