scispace - formally typeset
Search or ask a question
Author

Jamie Speirs

Other affiliations: Royal School of Mines
Bio: Jamie Speirs is an academic researcher from Imperial College London. The author has contributed to research in topics: Greenhouse gas & Natural gas. The author has an hindex of 21, co-authored 26 publications receiving 2198 citations. Previous affiliations of Jamie Speirs include Royal School of Mines.

Papers
More filters
Journal ArticleDOI
TL;DR: The UK Energy Research Centre (UKERC) as mentioned in this paper conducted an independent, thorough and systematic review of the evidence, with the aim of establishing the current state of knowledge, identifying key uncertainties and improving consensus.

342 citations

Journal ArticleDOI
15 Jun 2013-Energy
TL;DR: The authors assesses the currently available evidence on the size of unconventional gas resources at both the regional and global level and concludes that unconventional gas could represent 40% of the remaining technically recoverable resource of natural gas, but the level of uncertainty is extremely high.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a holistic assessment of these options and their combined potential to decarbonise international shipping, from a technology, environmental and policy perspective, by estimating the combined decarbonisation potential of multiple options.

311 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the evidence around future lithium availability for the manufacturing of EV batteries and examine the methods used to estimate both lithium demand from EVs and lithium supply from brines and ore.
Abstract: Supported by policy, electric vehicles (EVs) powered by lithium batteries are being commercialised in an increasing number of models and their global stock surpassed two million units in 2016. However, there is uncertainty around the future price and availability of lithium, which has consequences on the feasibility of manufacturing lithium batteries at scale. Reaching the EV penetration levels foreseen by governments implies a substantial growth in lithium demand. In this chapter, we review the evidence around future lithium availability for the manufacturing of EV batteries. We examine the methods used to estimate both lithium demand from EVs and lithium supply from brines and ore. The main variables influencing demand are the future size of the EV market, the average battery capacity and the material intensity of the batteries. Supply projections depend on global reserve and resource estimates, forecast production and recyclability. We find that the assumptions made in the literature on the key variables are characterised by significant uncertainty. However based on the available evidence, it appears that lithium production may be on a lower trajectory than demand and would have to rapidly increase in order not to prove a bottleneck to the expansion of the EV market. More research is needed in order to reduce uncertainty on lithium intensity of future EVs and improve understanding of the potential for lithium production expansion and recycling.

264 citations

Journal ArticleDOI
TL;DR: In this paper, the relative costs of carbon mitigation from a life cycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources by technology substitution are examined, and the results show that there is a tradeoff between the cost of mitigation and the proportion of decarbonization achieved.
Abstract: Different technologies produce hydrogen with varying cost and carbon footprints over the entire resource supply chain and manufacturing steps. This paper examines the relative costs of carbon mitigation from a life cycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources by technology substitution. Production costs and life cycle emissions are parameterized and re-estimated from currently available assessments to produce robust ranges to describe uncertainties for each technology. Hydrogen production routes are then compared using a combination of metrics, levelized cost of carbon mitigation and the proportional decarbonization benchmarked against steam methane reforming, to provide a clearer picture of the relative merits of various hydrogen production pathways, the limitations of technologies and the research challenges that need to be addressed for cost-effective decarbonization pathways. The results show that there is a trade-off between the cost of mitigation and the proportion of decarbonization achieved. The most cost-effective methods of decarbonization still utilize fossil feedstocks due to their low cost of extraction and processing, but only offer moderate decarbonisation levels due to previous underestimations of supply chain emissions contributions. Methane pyrolysis may be the most cost-effective short-term abatement solution, but its emissions reduction performance is heavily dependent on managing supply chain emissions whilst cost effectiveness is governed by the price of solid carbon. Renewable electrolytic routes offer significantly higher emissions reductions, but production routes are more complex than those that utilise naturally-occurring energy-dense fuels and hydrogen costs are high at modest renewable energy capacity factors. Nuclear routes are highly cost-effective mitigation options, but could suffer from regionally varied perceptions of safety and concerns regarding proliferation and the available data lacks depth and transparency. Better-performing fossil-based hydrogen production technologies with lower decarbonization fractions will be required to minimise the total cost of decarbonization but may not be commensurate with ambitious climate targets.

248 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential is presented in this article.
Abstract: Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.

1,938 citations