scispace - formally typeset
Search or ask a question
Author

Jamison McCorrison

Bio: Jamison McCorrison is an academic researcher from J. Craig Venter Institute. The author has contributed to research in topics: Human microbiome & Microbiome. The author has an hindex of 15, co-authored 30 publications receiving 17394 citations. Previous affiliations of Jamison McCorrison include University of California, San Diego.

Papers
More filters
Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

8,410 citations

Journal Article
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Abstract: Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

6,350 citations

Journal ArticleDOI
Barbara A. Methé1, Karen E. Nelson1, Mihai Pop2, Heather Huot Creasy3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomics data available to the scientific community as mentioned in this paper.
Abstract: A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.

2,172 citations

Journal ArticleDOI
Nevin D. Young1, Frédéric Debellé2, Frédéric Debellé3, Giles E. D. Oldroyd4, René Geurts5, Steven B. Cannon6, Steven B. Cannon7, Michael K. Udvardi, Vagner A. Benedito8, Klaus F. X. Mayer, Jérôme Gouzy2, Jérôme Gouzy3, Heiko Schoof9, Yves Van de Peer10, Sebastian Proost10, Douglas R. Cook11, Blake C. Meyers12, Manuel Spannagl, Foo Cheung13, Stéphane De Mita5, Vivek Krishnakumar13, Heidrun Gundlach, Shiguo Zhou14, Joann Mudge15, Arvind K. Bharti15, Jeremy D. Murray4, Marina Naoumkina, Benjamin D. Rosen11, Kevin A. T. Silverstein1, Haibao Tang13, Stephane Rombauts10, Patrick X. Zhao, Peng Zhou1, Valérie Barbe, Philippe Bardou2, Philippe Bardou3, Michael Bechner14, Arnaud Bellec2, Anne Berger, Hélène Bergès2, Shelby L. Bidwell13, Ton Bisseling16, Ton Bisseling5, Nathalie Choisne, Arnaud Couloux, Roxanne Denny1, Shweta Deshpande17, Xinbin Dai, Jeff J. Doyle18, Anne Marie Dudez2, Anne Marie Dudez3, Andrew Farmer15, Stéphanie Fouteau, Carolien Franken5, Chrystel Gibelin2, Chrystel Gibelin3, John Gish11, Steven A. Goldstein14, Alvaro J. González12, Pamela J. Green12, Asis Hallab19, Marijke Hartog5, Axin Hua17, Sean Humphray20, Dong-Hoon Jeong12, Yi Jing17, Anika Jöcker19, Steve Kenton17, Dong-Jin Kim11, Dong-Jin Kim21, Kathrin Klee19, Hongshing Lai17, Chunting Lang5, Shaoping Lin17, Simone L. Macmil17, Ghislaine Magdelenat, Lucy Matthews20, Jamison McCorrison13, Erin L. Monaghan13, Jeong Hwan Mun22, Jeong Hwan Mun11, Fares Z. Najar17, Christine Nicholson20, Céline Noirot2, Majesta O'Bleness17, Charles Paule1, Julie Poulain, Florent Prion2, Florent Prion3, Baifang Qin17, Chunmei Qu17, Ernest F. Retzel15, Claire Riddle20, Erika Sallet2, Erika Sallet3, Sylvie Samain, Nicolas Samson3, Nicolas Samson2, Iryna Sanders17, Olivier Saurat3, Olivier Saurat2, Claude Scarpelli, Thomas Schiex2, Béatrice Segurens, Andrew J. Severin6, D. Janine Sherrier12, Ruihua Shi17, Sarah Sims20, Susan R. Singer23, Senjuti Sinharoy, Lieven Sterck10, Agnès Viollet, Bing Bing Wang1, Keqin Wang17, Mingyi Wang, Xiaohong Wang1, Jens Warfsmann19, Jean Weissenbach, Doug White17, James D. White17, Graham B. Wiley17, Patrick Wincker, Yanbo Xing17, Limei Yang17, Ziyun Yao17, Fu Ying17, Jixian Zhai12, Liping Zhou17, Antoine Zuber2, Antoine Zuber3, Jean Dénarié2, Jean Dénarié3, Richard A. Dixon, Gregory D. May15, David C. Schwartz14, Jane Rogers24, Francis Quetier, Christopher D. Town13, Bruce A. Roe17 
22 Dec 2011-Nature
TL;DR: The draft sequence of the M. truncatula genome sequence is described, a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics, which provides significant opportunities to expand al falfa’s genomic toolbox.
Abstract: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.

1,153 citations

Journal ArticleDOI
21 May 2010-Science
TL;DR: Results from an initial reference genome sequencing of 178 microbial genomes allow for ~40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used, suggesting that the authors are still far from saturating microbial species genetic data sets.
Abstract: The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.

649 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors is presented, revealing a diversity of previously undetected Lactobacillus crispatus variants.
Abstract: We present the open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors (https://github.com/benjjneb/dada2). DADA2 infers sample sequences exactly and resolves differences of as little as 1 nucleotide. In several mock communities, DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.

14,505 citations

Journal ArticleDOI
TL;DR: The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% correct bases commonly reported by other methods.
Abstract: Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.

11,329 citations

Journal ArticleDOI
22 Apr 2013-PLOS ONE
TL;DR: The phyloseq project for R is a new open-source software package dedicated to the object-oriented representation and analysis of microbiome census data in R, which supports importing data from a variety of common formats, as well as many analysis techniques.
Abstract: Background The analysis of microbial communities through DNA sequencing brings many challenges: the integration of different types of data with methods from ecology, genetics, phylogenetics, multivariate statistics, visualization and testing. With the increased breadth of experimental designs now being pursued, project-specific statistical analyses are often needed, and these analyses are often difficult (or impossible) for peer researchers to independently reproduce. The vast majority of the requisite tools for performing these analyses reproducibly are already implemented in R and its extensions (packages), but with limited support for high throughput microbiome census data. Results Here we describe a software project, phyloseq, dedicated to the object-oriented representation and analysis of microbiome census data in R. It supports importing data from a variety of common formats, as well as many analysis techniques. These include calibration, filtering, subsetting, agglomeration, multi-table comparisons, diversity analysis, parallelized Fast UniFrac, ordination methods, and production of publication-quality graphics; all in a manner that is easy to document, share, and modify. We show how to apply functions from other R packages to phyloseq-represented data, illustrating the availability of a large number of open source analysis techniques. We discuss the use of phyloseq with tools for reproducible research, a practice common in other fields but still rare in the analysis of highly parallel microbiome census data. We have made available all of the materials necessary to completely reproduce the analysis and figures included in this article, an example of best practices for reproducible research. Conclusions The phyloseq project for R is a new open-source software package, freely available on the web from both GitHub and Bioconductor.

11,272 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations