scispace - formally typeset
Search or ask a question
Author

Jan Deubner

Bio: Jan Deubner is an academic researcher from University of Freiburg. The author has contributed to research in topics: Optogenetics & Cloud computing. The author has an hindex of 3, co-authored 3 publications receiving 771 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An ImageJ plugin is presented that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service.
Abstract: U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.

1,222 citations

Journal ArticleDOI
TL;DR: Corrections have been made in the PDF and HTML versions of the article, as well as in any cover sheets for associated Supplementary Information.
Abstract: In the version of this paper originally published, one of the affiliations for Dominic Mai was incorrect: "Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany" should have been "Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs-University, Freiburg, Germany." This change required some renumbering of subsequent author affiliations. These corrections have been made in the PDF and HTML versions of the article, as well as in any cover sheets for associated Supplementary Information.

53 citations

Journal ArticleDOI
TL;DR: The role of optogenetics for basic research is emphasized, especially focusing on freely moving animals, as state-of-the-art strategies allow the targeted expression of opsins in neuronal subpopulations, defined either by genetic cell type or neuronal projection pattern.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

19 Nov 2012

1,653 citations

Journal ArticleDOI
TL;DR: UNet++ as mentioned in this paper proposes an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision, leading to a highly flexible feature fusion scheme.
Abstract: The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects—an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus .

1,487 citations

Journal ArticleDOI
TL;DR: An ImageJ plugin is presented that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service.
Abstract: U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.

1,222 citations

Journal ArticleDOI
TL;DR: The intersection between deep learning and cellular image analysis is reviewed and an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists are provided.
Abstract: Recent advances in computer vision and machine learning underpin a collection of algorithms with an impressive ability to decipher the content of images. These deep learning algorithms are being applied to biological images and are transforming the analysis and interpretation of imaging data. These advances are positioned to render difficult analyses routine and to enable researchers to carry out new, previously impossible experiments. Here we review the intersection between deep learning and cellular image analysis and provide an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists. We survey the field's progress in four key applications: image classification, image segmentation, object tracking, and augmented microscopy. Last, we relay our labs' experience with three key aspects of implementing deep learning in the laboratory: annotating training data, selecting and training a range of neural network architectures, and deploying solutions. We also highlight existing datasets and implementations for each surveyed application.

714 citations