scispace - formally typeset
Search or ask a question
Author

Jan Flusser

Bio: Jan Flusser is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Image restoration & Invariant (mathematics). The author has an hindex of 36, co-authored 201 publications receiving 12839 citations. Previous affiliations of Jan Flusser include Czechoslovak Academy of Sciences & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: The invariants from second- and third-order moments are derived and shown to be complete and to be invariant under general affine transformation and used for recognition of affine-deformed objects.

802 citations

Book
14 Dec 2009
TL;DR: This book presents a survey of both recent and traditional image analysis and pattern recognition methods, based on image moments, and offers new concepts of invariants to linear filtering and implicit invariants, and a systematic review of the basic definitions and properties of moments.
Abstract: Moments as projections of an images intensity onto a proper polynomial basis can be applied to many different aspects of image processing. These include invariant pattern recognition, image normalization, image registration, focus/ defocus measurement, and watermarking. This book presents a survey of both recent and traditional image analysis and pattern recognition methods, based on image moments, and offers new concepts of invariants to linear filtering and implicit invariants. In addition to the theory, attention is paid to efficient algorithms for moment computation in a discrete domain, and to computational aspects of orthogonal moments. The authors also illustrate the theory through practical examples, demonstrating moment invariants in real applications across computer vision, remote sensing and medical imaging. Key features: Presents a systematic review of the basic definitions and properties of moments covering geometric moments and complex moments. Considers invariants to traditional transforms translation, rotation, scaling, and affine transform - from a new point of view, which offers new possibilities of designing optimal sets of invariants. Reviews and extends a recent field of invariants with respect to convolution/blurring. Introduces implicit moment invariants as a tool for recognizing elastically deformed objects. Compares various classes of orthogonal moments (Legendre, Zernike, Fourier-Mellin, Chebyshev, among others) and demonstrates their application to image reconstruction from moments. Offers comprehensive advice on the construction of various invariants illustrated with practical examples. Includes an accompanying website providing efficient numerical algorithms for moment computation and for constructing invariants of various kinds, with about 250 slides suitable for a graduate university course. Moments and Moment Invariants in Pattern Recognition is ideal for researchers and engineers involved in pattern recognition in medical imaging, remote sensing, robotics and computer vision. Post graduate students in image processing and pattern recognition will also find the book of interest.

589 citations

Journal ArticleDOI
TL;DR: It is shown that for any set of invariants there exists a relatively small basis by means of which all other invariants can be generated and how to prove its independence and completeness is presented.

355 citations

Journal ArticleDOI
TL;DR: A new method is described for automatic control point selection and matching that can produce subpixel registration accuracy and is demonstrated by registration of SPOT and Landsat TM images.
Abstract: A new method is described for automatic control point selection and matching. First, reference and sensed images are segmented and closed-boundary regions are extracted. Each region is represented by a set of affine-invariant moment-based features. Correspondence between the regions is then established by a two-stage matching algorithm that works both in the feature space and in the image space. Centers of gravity of corresponding regions are used as control points. A practical use of the proposed method is demonstrated by registration of SPOT and Landsat TM images. It is shown that the authors' method can produce subpixel registration accuracy. >

292 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied, and establishing a framework for understanding the merits and relationships between the wide variety of existing techniques.
Abstract: Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors, or from different viewpoints. Virtually all large systems which evaluate images require the registration of images, or a closely related operation, as an intermediate step. Specific examples of systems where image registration is a significant component include matching a target with a real-time image of a scene for target recognition, monitoring global land usage using satellite images, matching stereo images to recover shape for autonomous navigation, and aligning images from different medical modalities for diagnosis.Over the years, a broad range of techniques has been developed for various types of data and problems. These techniques have been independently studied for several different applications, resulting in a large body of research. This paper organizes this material by establishing the relationship between the variations in the images and the type of registration techniques which can most appropriately be applied. Three major types of variations are distinguished. The first type are the variations due to the differences in acquisition which cause the images to be misaligned. To register images, a spatial transformation is found which will remove these variations. The class of transformations which must be searched to find the optimal transformation is determined by knowledge about the variations of this type. The transformation class in turn influences the general technique that should be taken. The second type of variations are those which are also due to differences in acquisition, but cannot be modeled easily such as lighting and atmospheric conditions. This type usually effects intensity values, but they may also be spatial, such as perspective distortions. The third type of variations are differences in the images that are of interest such as object movements, growths, or other scene changes. Variations of the second and third type are not directly removed by registration, but they make registration more difficult since an exact match is no longer possible. In particular, it is critical that variations of the third type are not removed. Knowledge about the characteristics of each type of variation effect the choice of feature space, similarity measure, search space, and search strategy which will make up the final technique. All registration techniques can be viewed as different combinations of these choices. This framework is useful for understanding the merits and relationships between the wide variety of existing techniques and for assisting in the selection of the most suitable technique for a specific problem.

4,769 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: An automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional).
Abstract: We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for nonlinear least-square optimization. The geometric deformation model is a global three-dimensional (3-D) affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intramodality positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. We conclude that the multiresolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster.

2,801 citations

Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations