scispace - formally typeset
Search or ask a question
Author

Jan H.J. Hoeijmakers

Bio: Jan H.J. Hoeijmakers is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: DNA repair & Nucleotide excision repair. The author has an hindex of 113, co-authored 357 publications receiving 49045 citations. Previous affiliations of Jan H.J. Hoeijmakers include University of Cologne & Erasmus University Medical Center.


Papers
More filters
Journal ArticleDOI
17 May 2001-Nature
TL;DR: This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.
Abstract: The early notion that cancer is caused by mutations in genes critical for the control of cell growth implied that genome stability is important for preventing oncogenesis. During the past decade, knowledge about the mechanisms by which genes erode and the molecular machinery designed to counteract this time-dependent genetic degeneration has increased markedly. At the same time, it has become apparent that inherited or acquired deficiencies in genome maintenance systems contribute significantly to the onset of cancer. This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.

3,898 citations

Journal ArticleDOI
TL;DR: Evidence that cancer and diseases of aging are two sides of the DNAdamage problem is presented, followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.
Abstract: NA damage has emerged as a major culprit in cancer and many diseases related to aging. The stability of the genome is supported by an intricate machinery of repair, damage tolerance, and checkpoint pathways that counteracts DNA damage. In addition, DNA damage and other stresses can trigger a highly conserved, anticancer, antiaging survival response that suppresses metabolism and growth and boosts defenses that maintain the integrity of the cell. Induction of the survival response may allow interventions that improve health and extend the life span. Recently, the first candidate for such interventions, rapamycin (also known as sirolimus), has been identified. 1 Compromised repair systems in tumors also offer opportunities for intervention, making it possible to attack malignant cells in which maintenance of the genome has been weakened. Time-dependent accumulation of damage in cells and organs is associated with gradual functional decline and aging. 2 The molecular basis of this phenomenon is unclear, 3-5 whereas in cancer, DNA alterations are the major culprit. In this review, I present evidence that cancer and diseases of aging are two sides of the DNAdamage problem. An examination of the importance of DNA damage and the systems of genome maintenance in relation to aging is followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.

1,917 citations

Journal ArticleDOI
15 Apr 1999-Nature
TL;DR: It is shown that mice lacking the Cry1 or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively, which suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.
Abstract: Many biochemical, physiological and behavioural processes show circadian rhythms which are generated by an internal time-keeping mechanism referred to as the biological clock. According to rapidly developing models, the core oscillator driving this clock is composed of an autoregulatory transcription-(post) translation-based feedback loop involving a set of 'dock' genes. Molecular clocks do not oscillate with an exact 24-hour rhythmicity but are entrained to solar day/night rhythms by light. The mammalian proteins Cryl and Cry2, which are members of the family of plant blue-light receptors (cryptochromes) and photolyases, have been proposed as candidate light receptors for photoentrainment of the biological clock. Here we show that mice lacking the Cryl or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively. Strikingly, in the absence of both proteins, an instantaneous and complete loss of free-running rhythmicity is observed. This suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.

1,315 citations

Journal ArticleDOI
TL;DR: It is shown that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA).

1,288 citations

Journal ArticleDOI
TL;DR: Interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.
Abstract: Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-stranded breaks in DNA are important threats to genome integrity because they can result in chromosomal aberrations that can affect, simultaneously, many genes, and lead to cell malfunctioning and cell death. These detrimental consequences are counteracted by two mechanistically distinct pathways of double-stranded break repair: homologous recombination and non-homologous end-joining. Recently, unexpected links between these double-stranded break-repair systems, and several human genome instability and cancer predisposition syndromes, have emerged. Now, interactions between both double-stranded break-repair pathways and other cellular processes, such as cell-cycle regulation and replication, are being unveiled.

1,230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A method that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements is described, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Abstract: Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.

12,102 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: The surface of nucleosomes is studded with a multiplicity of modifications that can dictate the higher-order chromatin structure in which DNA is packaged and can orchestrate the ordered recruitment of enzyme complexes to manipulate DNA.

10,046 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations

Journal ArticleDOI
07 Feb 1997-Cell
TL;DR: The author regrets the lack of citations for many important observations mentioned in the text, but their omission is made necessary by restrictions in the preparation of review manuscripts.

7,653 citations