scispace - formally typeset
Search or ask a question
Author

Jan Jadżyn

Other affiliations: Katholieke Universiteit Leuven
Bio: Jan Jadżyn is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Liquid crystal & Dielectric. The author has an hindex of 25, co-authored 234 publications receiving 2453 citations. Previous affiliations of Jan Jadżyn include Katholieke Universiteit Leuven.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the static and dynamic dielectric properties of mesogenic 4-cyanophenyl-4-n-heptylbenzoate in the isotropic (I) and nematic (N) phases were investigated.
Abstract: This article presents results of the static and dynamic dielectric studies performed for mesogenic 4-cyanophenyl-4′-n-heptylbenzoate in the isotropic (I) and nematic (N) phases. Pretransitional phenomena are observed in the vicinity of I–N phase transition as an anomalous temperature behavior of both the static and the dynamic dielectric properties of the compound. The temperature dependence of the static permittivity is correlated with the entropy change induced by the probing electric field while an anomalous behavior of the dielectric relaxation directly points out for a subdiffusional Brownian rotation of mesogenic molecules in the vicinity of the phase transition.

8 citations

Journal ArticleDOI
TL;DR: The singularities in dependence of the entropy increment on the temperature and on the mixtures composition are discussed in terms of the prenematic molecular self-organization extent in mesogenic liquids of different density of dipoles.
Abstract: The paper concerns two aspects of the entropy in mesogenic systems: (i) the entropy jump (ΔS0NI) at the phase transition from the isotropic liquid (I) to the nematic liquid crystalline state (N), and (ii) the entropy increment (ΔS) caused by the ordering action of the probing electric field applied to the dipolar system. The system studied are the mixtures of strongly polar mesogenic solvent n-hexylcyanobiphenyl (C6H13PhPhCN, 6CB) and the nonpolar nonmesogenic admixture 4-ethylcyclohexyl-4′-n-nonylphenyl (C2H5CyHxPhC9H19, 2CyPh9). The entropy jump at the I−N phase transition in pure 6CB [ΔS0NI= 1.52 J/(mol K)] was evaluated from the analysis of the phase diagram of the mixture 6CB + 2CyPh9 with use of the Landau−Lifshitz theory; the resulting value of the transition enthalpy (ΔH0NI = TNIΔS0NI = 0.50 kJ/mol) agrees well to that obtained with the calorimetric methods. The field-induced entropy increment (ΔS) was calculated, at the given temperature, from the static dielectric permittivity derivative value (...

7 citations

Journal ArticleDOI
TL;DR: In this article, the dipole moment of the propionimide cyclic dimer is shown to be equal to zero, and the thermodynamic parameters describing the process of this dimerization are given.

7 citations

Journal ArticleDOI
TL;DR: In this article, the influence of electric and magnetic fields on the orientational structure of ferronematics based on a thermotropic nematic 4-trans-4\(^{\prime }\)-n-hexylcyclohexyl-isothiocyanato-benzene (6CHBT) was studied.
Abstract: We have studied the influence of electric and magnetic fields on the orientational structure of ferronematics based on a thermotropic nematic 4-trans-4\(^{\prime }\)-n-hexylcyclohexyl-isothiocyanato-benzene (6CHBT). The 6CHBT liquid crystal has been dissolved in phenyl isothiocyanate and doped with rod-like or chain-like magnetic particles. In such a mixture, the phase transition from an isotropic to a nematic phase is via a droplet state, i.e., coexistence of nematic and isotropic phases. The obtained results showed that a combination of the electric and magnetic fields can change the character of a phase transition from the isotropic to the nematic phase via the droplet state in such systems. Moreover, magneto-dielectric measurements of structural transitions showed the magnetic field induced a shift of the phase transition temperature from the isotropic to the droplet state.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
TL;DR: This article compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems.
Abstract: Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their host molecules, typically proteins, given their three-dimensional structures. This optimization process requires knowledge about interaction geometries and approximate affinity contributions of attractive interactions that can be gleaned from crystal structure and associated affinity data. Here we compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems. We attempt to extract key messages of practical value and complement references with our own searches of the CSDa,(1) and PDB databases.(2) The focus is on direct contacts between ligand and protein functional groups, and we restrict ourselves to those interactions that are most frequent in medicinal chemistry applications. Examples from supramolecular chemistry and quantum mechanical or molecular mechanics calculations are cited where they illustrate a specific point. The application of automated design processes is not covered nor is design of physicochemical properties of molecules such as permeability or solubility. Throughout this article, we wish to raise the readers’ awareness that formulating rules for molecular interactions is only possible within certain boundaries. The combination of 3D structure analysis with binding free energies does not yield a complete understanding of the energetic contributions of individual interactions. The reasons for this are widely known but not always fully appreciated. While it would be desirable to associate observed interactions with energy terms, we have to accept that molecular interactions behave in a highly nonadditive fashion.3,4 The same interaction may be worth different amounts of free energy in different contexts, and it is very hard to find an objective frame of reference for an interaction, since any change of a molecular structure will have multiple effects. One can easily fall victim to confirmation bias, focusing on what one has observed before and building causal relationships on too few observations. In reality, the multiplicity of interactions present in a single protein−ligand complex is a compromise of attractive and repulsive interactions that is almost impossible to deconvolute. By focusing on observed interactions, one neglects a large part of the thermodynamic cycle represented by a binding free energy: solvation processes, long-range interactions, conformational changes. Also, crystal structure coordinates give misleadingly static views of interactions. In reality a macromolecular complex is not characterized by a single structure but by an ensemble of structures. Changes in the degrees of freedom of both partners during the binding event have a large impact on binding free energy. The text is organized in the following way. The first section treats general aspects of molecular design: enthalpic and entropic components of binding free energy, flexibility, solvation, and the treatment of individual water molecules, as well as repulsive interactions. The second half of the article is devoted to specific types of interactions, beginning with hydrogen bonds, moving on to weaker polar interactions, and ending with lipophilic interactions between aliphatic and aromatic systems. We show many examples of structure−activity relationships; these are meant as helpful illustrations but individually can never confirm a rule.

1,162 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the mechanisms underlying the relaxation properties of glass-forming liquids and polymers is provided, with an emphasis in the insight provided into the mechanism underlying the glass relaxation properties.
Abstract: An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification Recent advances have been made by using hydrostatic pressure as an experimental variable These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers

638 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics aspects of the new research thrusts, in which liquid crystals often meet other types of soft condensed matter, such as polymers and colloidal nano- or microparticle dispersions.

587 citations

Journal ArticleDOI
TL;DR: The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionIC liquid crystals and particularly to ionic liquids will also be provided.
Abstract: This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

563 citations