scispace - formally typeset
Search or ask a question
Author

Jan Jadżyn

Other affiliations: Katholieke Universiteit Leuven
Bio: Jan Jadżyn is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Liquid crystal & Dielectric. The author has an hindex of 25, co-authored 234 publications receiving 2453 citations. Previous affiliations of Jan Jadżyn include Katholieke Universiteit Leuven.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent results on static dielectric behavior in vicinity of weakly first order transition from isotropic liquid to a liquid crystalline nematic phase of compounds used in opto-electronic devices is presented.
Abstract: The paper presents a review of recent results on static dielectric behaviour in vicinity of weakly first order transition from isotropic liquid to a liquid crystalline nematic phase of compounds used in opto-electronic devices. Temperature behaviour of static permittivity and its derivative are interpreted in terms of a basic thermodynamic quantities increment (internal energy, entropy and Helmholtz free energy) induced by a probing electric field.

7 citations

Journal ArticleDOI
TL;DR: In this paper, static and dynamic dielectric measurements were performed with very high accuracy on a mesogenic compound n−heptylcyanobiphenyl (7CB) in the isotropic (I) and nematic (N) phases.
Abstract: Static and dynamic dielectric measurements were performed with very high accuracy on a mesogenic compound n‐heptylcyanobiphenyl (7CB) in the isotropic (I) and nematic (N) phases. The critical‐like temperature behaviour of the static permittivity of isotropic 7CB in the vicinity of the I–N phase transition can be described with the critical exponent close to 0.5, indicating the tricritical nature of the transition. Anomalously slow rotational diffusion (subdiffusion), characterized by a fractal value of the diffusion exponent α, is observed in the vicinity of the I–N transition with a lambda‐like profile of the exponent temperature dependence.

7 citations

Journal ArticleDOI
TL;DR: It was found that the two polar liquids in the neat state reveal quite different molecular organization in terms of dipole-dipole self-assembling: PC exhibits a dipolar coupling of the head-to-tail type, whereas in DMSO one observes extreme restriction of dipolar association in any form.
Abstract: This article presents the results of static dielectric studies performed on mixtures of two strongly polar liquids important from a technological point of view: propylene carbonate (PC) and dimethyl sulfoxide (DMSO). The dielectric data were analyzed in terms of the molar orientational entropy increment induced by the probing electric field. It was found that the two polar liquids in the neat state reveal quite different molecular organization in terms of dipole–dipole self-assembling: PC exhibits a dipolar coupling of the head-to-tail type, whereas in DMSO one observes extreme restriction of dipolar association in any form. In PC + DMSO mixtures, the disintegration of the dipolar ensembles of PC molecules takes place and the progress of that process is strictly proportional to the concentration of DMSO. The static permittivity of mixtures of such differently self-organized liquids exhibits a positive deviation from the additive rule and the deviation develops symmetrically within the concentration scale.

7 citations

Journal ArticleDOI
TL;DR: In this article, a dielectric relaxation study for the liquid crystal 4-isothiocyanatophenyl 4-hexylbicyclo[2, 2,2,2] octane-1carboxylate in the nematic and isotropic phases has been carried out in the frequency range from 1 kHz to 1 GHz.

7 citations

Journal ArticleDOI
TL;DR: The nonlinear dielectric spectra of mesogenic 4n-butylcyclohexanecarboxylic acid (C4H9CyHxCOOH, BCHA) and nonmesogenic 4m-methylcycloencarcoxyl acid (MCHA) in cyclohexane solutio
Abstract: The nonlinear dielectric spectra of mesogenic 4-n-butylcyclohexanecarboxylic acid (C4H9CyHxCOOH, BCHA) and nonmesogenic 4-methylcyclohexanecarboxylic acid (CH3CyHxCOOH, MCHA) in cyclohexane solutio

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
TL;DR: This article compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems.
Abstract: Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their host molecules, typically proteins, given their three-dimensional structures. This optimization process requires knowledge about interaction geometries and approximate affinity contributions of attractive interactions that can be gleaned from crystal structure and associated affinity data. Here we compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems. We attempt to extract key messages of practical value and complement references with our own searches of the CSDa,(1) and PDB databases.(2) The focus is on direct contacts between ligand and protein functional groups, and we restrict ourselves to those interactions that are most frequent in medicinal chemistry applications. Examples from supramolecular chemistry and quantum mechanical or molecular mechanics calculations are cited where they illustrate a specific point. The application of automated design processes is not covered nor is design of physicochemical properties of molecules such as permeability or solubility. Throughout this article, we wish to raise the readers’ awareness that formulating rules for molecular interactions is only possible within certain boundaries. The combination of 3D structure analysis with binding free energies does not yield a complete understanding of the energetic contributions of individual interactions. The reasons for this are widely known but not always fully appreciated. While it would be desirable to associate observed interactions with energy terms, we have to accept that molecular interactions behave in a highly nonadditive fashion.3,4 The same interaction may be worth different amounts of free energy in different contexts, and it is very hard to find an objective frame of reference for an interaction, since any change of a molecular structure will have multiple effects. One can easily fall victim to confirmation bias, focusing on what one has observed before and building causal relationships on too few observations. In reality, the multiplicity of interactions present in a single protein−ligand complex is a compromise of attractive and repulsive interactions that is almost impossible to deconvolute. By focusing on observed interactions, one neglects a large part of the thermodynamic cycle represented by a binding free energy: solvation processes, long-range interactions, conformational changes. Also, crystal structure coordinates give misleadingly static views of interactions. In reality a macromolecular complex is not characterized by a single structure but by an ensemble of structures. Changes in the degrees of freedom of both partners during the binding event have a large impact on binding free energy. The text is organized in the following way. The first section treats general aspects of molecular design: enthalpic and entropic components of binding free energy, flexibility, solvation, and the treatment of individual water molecules, as well as repulsive interactions. The second half of the article is devoted to specific types of interactions, beginning with hydrogen bonds, moving on to weaker polar interactions, and ending with lipophilic interactions between aliphatic and aromatic systems. We show many examples of structure−activity relationships; these are meant as helpful illustrations but individually can never confirm a rule.

1,162 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the mechanisms underlying the relaxation properties of glass-forming liquids and polymers is provided, with an emphasis in the insight provided into the mechanism underlying the glass relaxation properties.
Abstract: An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification Recent advances have been made by using hydrostatic pressure as an experimental variable These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers

638 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics aspects of the new research thrusts, in which liquid crystals often meet other types of soft condensed matter, such as polymers and colloidal nano- or microparticle dispersions.

587 citations

Journal ArticleDOI
TL;DR: The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionIC liquid crystals and particularly to ionic liquids will also be provided.
Abstract: This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

563 citations