scispace - formally typeset
Search or ask a question
Author

Jan Jadżyn

Other affiliations: Katholieke Universiteit Leuven
Bio: Jan Jadżyn is an academic researcher from Polish Academy of Sciences. The author has contributed to research in topics: Liquid crystal & Dielectric. The author has an hindex of 25, co-authored 234 publications receiving 2453 citations. Previous affiliations of Jan Jadżyn include Katholieke Universiteit Leuven.


Papers
More filters
Journal ArticleDOI
TL;DR: Results of broadband dielectric studies in glass-forming liquid crystalline chiral isopentylcyanobiphenyl (5(*) CB) are presented and it has been found that 5(*)CB shows a unique pressure-temperature phase diagram.
Abstract: Results of broadband dielectric studies in glass-forming liquid crystalline chiral isopentylcyanobiphenyl (5(*)CB) are presented. Tests conducted as a function of temperature and pressure revealed the coexistence of glassy and critical properties. The latter are associated with the isotropic-cholesteric phase transition at T(I-Ch) approximately 250 K under atmospheric pressure. Dielectric loss curves in the isotropic liquid and in the cholesteric phase are clearly broadened on cooling and pressuring towards the glass transition. Although in the isotropic phase there is a single stretched loss curve, in the mesophase an additional relaxation process can be distinguished. The evolution of relaxation times is non-Arrhenius and can be portrayed by the Vogel-Fulcher-Tamman relation or its pressure counterpart. The glassy dynamics coexists with the critical-like behavior for the static dielectric permittivity and for the maxima of the dielectric loss curves. Their temperature and pressure dependences are associated with the critical exponent phi=1-alpha approximately 1/2, where alpha approximately 1/2 is the specific heat critical exponent. This behavior is associated with the continuous phase transition placed at DeltaT approximately 1.5 K below the clearing temperature for P=0.1 MPa. It has been found that 5(*)CB shows a unique pressure-temperature phase diagram. Pressure and temperature changes which begin in the isotropic liquid below at ca. T approximately 265 K always result in the transition to the cholesteric phase which can be supercooled or superpressed. For T>265 K the phase transition to another phase, presumably a solid one, always occurs. However, a cholesteric-solid phase border seems to exist only in isothermal pressure tests. It does not appear in the temperature studies.

32 citations

Journal ArticleDOI
TL;DR: In this article, the temperature dependence of the principal static permittivities of nematics epsilon (T) and Epsilon(T) was analyzed using the Maier-Meier equations, and the following quantities were obtained: (i) the angle between the dipole moment vector and the long axis of the mesogenic molecules, (ii) the square of the apparent molecular dipole moments, and (iii) the nematic order parameter S(T).
Abstract: This paper shows that on the basis of the temperature dependence of the principal static permittivities of nematics epsilon (T) and epsilon (T), using the Maier-Meier equations, the following quantities can be obtained: (i) the angle between the dipole moment vector and the long axis of the mesogenic molecules, (ii) the square of the apparent molecular dipole moment mu2app(T) and (iii) the nematic order parameter S(T).

30 citations

Journal ArticleDOI
TL;DR: In this article, the direct current ionic conductivity and the static dielectric permittivity reveal themselves in the complex impedance, the electric modulus, and the conductance of molecular liquids when the frequency of the electric stimulus is much lower than that corresponding to the dipolar reorientational relaxation of the liquid under investigation.
Abstract: The paper shows how the direct current ionic conductivity (σDC) and the static dielectric permittivity (es) reveal themselves in the complex impedance, the electric modulus, and the conductance of molecular liquids when the frequency of the electric stimulus is much lower than that corresponding to the dipolar reorientational relaxation of the liquid under investigation. It was shown that, in such static dielectric conditions, one observes the relaxational behavior of the impedance and the electric modulus, both of the Debye-type and of the same relaxation time, depending on σDC and es values. The discussion is illustrated with the experimental electric spectra of liquid cyclobutanone recorded in the frequency region from 500 Hz to 5 MHz and in the temperature range from 243 to 313 K.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the observations of structural transitions in ferronematics based on the thermotropic nematics 6CHBT (4-trans-4'-n-hexyl-cyclohexyl]-isothiocyanato-benzene).
Abstract: In this work we describe the observations of structural transitions in ferronematics based on the thermotropic nematics 6CHBT (4-trans-4'-n-hexyl-cyclohexyl-isothiocyanato-benzene). The ferronematic droplets were observed in solutions of nematogenic 6CHBT dissolved in phenyl isocyanate and doped with fine magnetic particles. The phase diagram of the transitions from the isotropic phase to the nematic phase via a droplet state was found. Magneto-dielectric measurements of various structural transitions in this new system enabled us to estimate the type of anchoring of the nematic molecules on the magnetic particle surfaces in the droplets.

29 citations

Journal ArticleDOI
TL;DR: In this article, the shear viscosity data for the isotropic phase of the homologous series of mesogenic n-alkylcyanobiphenyls (CnH2n+1PhPhC⋮N, nCB) were presented.
Abstract: The paper presents the shear viscosity data for the isotropic phase of the homologous series of mesogenic n-alkylcyanobiphenyls (CnH2n+1PhPhC⋮N, nCB) for n = 2−12.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
TL;DR: This article compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems.
Abstract: Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their host molecules, typically proteins, given their three-dimensional structures. This optimization process requires knowledge about interaction geometries and approximate affinity contributions of attractive interactions that can be gleaned from crystal structure and associated affinity data. Here we compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems. We attempt to extract key messages of practical value and complement references with our own searches of the CSDa,(1) and PDB databases.(2) The focus is on direct contacts between ligand and protein functional groups, and we restrict ourselves to those interactions that are most frequent in medicinal chemistry applications. Examples from supramolecular chemistry and quantum mechanical or molecular mechanics calculations are cited where they illustrate a specific point. The application of automated design processes is not covered nor is design of physicochemical properties of molecules such as permeability or solubility. Throughout this article, we wish to raise the readers’ awareness that formulating rules for molecular interactions is only possible within certain boundaries. The combination of 3D structure analysis with binding free energies does not yield a complete understanding of the energetic contributions of individual interactions. The reasons for this are widely known but not always fully appreciated. While it would be desirable to associate observed interactions with energy terms, we have to accept that molecular interactions behave in a highly nonadditive fashion.3,4 The same interaction may be worth different amounts of free energy in different contexts, and it is very hard to find an objective frame of reference for an interaction, since any change of a molecular structure will have multiple effects. One can easily fall victim to confirmation bias, focusing on what one has observed before and building causal relationships on too few observations. In reality, the multiplicity of interactions present in a single protein−ligand complex is a compromise of attractive and repulsive interactions that is almost impossible to deconvolute. By focusing on observed interactions, one neglects a large part of the thermodynamic cycle represented by a binding free energy: solvation processes, long-range interactions, conformational changes. Also, crystal structure coordinates give misleadingly static views of interactions. In reality a macromolecular complex is not characterized by a single structure but by an ensemble of structures. Changes in the degrees of freedom of both partners during the binding event have a large impact on binding free energy. The text is organized in the following way. The first section treats general aspects of molecular design: enthalpic and entropic components of binding free energy, flexibility, solvation, and the treatment of individual water molecules, as well as repulsive interactions. The second half of the article is devoted to specific types of interactions, beginning with hydrogen bonds, moving on to weaker polar interactions, and ending with lipophilic interactions between aliphatic and aromatic systems. We show many examples of structure−activity relationships; these are meant as helpful illustrations but individually can never confirm a rule.

1,162 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the mechanisms underlying the relaxation properties of glass-forming liquids and polymers is provided, with an emphasis in the insight provided into the mechanism underlying the glass relaxation properties.
Abstract: An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification Recent advances have been made by using hydrostatic pressure as an experimental variable These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers

638 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the physics aspects of the new research thrusts, in which liquid crystals often meet other types of soft condensed matter, such as polymers and colloidal nano- or microparticle dispersions.

587 citations

Journal ArticleDOI
TL;DR: The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionIC liquid crystals and particularly to ionic liquids will also be provided.
Abstract: This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

563 citations