Author
Jan Kramers
Other affiliations: University of Liverpool, Leipzig University, University of the Witwatersrand ...read more
Bio: Jan Kramers is an academic researcher from University of Johannesburg. The author has contributed to research in topic(s): Metamorphism & Craton. The author has an hindex of 56, co-authored 175 publication(s) receiving 20428 citation(s). Previous affiliations of Jan Kramers include University of Liverpool & Leipzig University.
Topics: Metamorphism, Craton, Cave, Granulite, Gneiss
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, a two-stage model for terrestrial lead isotope evolution is proposed, which permits the age of the earth to be that of the meteorite system and also yields good model ages for samples of all ages.
Abstract: Parameters on which models for terrestrial lead isotope evolution are based have recently been revised. These parameters are the isotopic composition of troilite lead, the age of the meteorite system and the decay constants of uranium and thorium. As a result, the normal single-stage model in which the age of the earth is taken to be that of the meteorite system is now untenable. A two-stage model has been constructed which permits the age of the earth to be that of the meteorite system and which also yields good model ages for samples of all ages. The new model postulates that lead developed initially from a primordial composition assumed to be that of troilite lead beginning at 4.57 b.y. ago. The average values of 238 U/ 204 Pb and 232 Th/ 204 Pb for this first stage were 7.19 and 32.21 respectively. At approximately 3.7 b.y. ago differentiation processes brought about the conditions of a second stage, in which 238 U/ 204 Pb ≈ 9.74 and 232 Th/ 204 Pb ≈ 37.19 in those portions of the earth which took part in mixing events, giving rise to average lead.
7,660 citations
TL;DR: A high-resolution oxygen-isotope record from a thorium-uranium–dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions.
Abstract: A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation for the periods from 10.3 to 2.7 and 1.4 to 0.4 thousand years before the present (ky B.P.). Between 10.3 and 8 ky B.P., decadal to centennial variations in monsoon precipitation are in phase with temperature fluctuations recorded in Greenland ice cores, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions. After approximately 8 ky B.P., monsoon precipitation decreases gradually in response to changing Northern Hemisphere summer solar insolation, with decadal to multidecadal variations in monsoon precipitation being linked to solar activity.
1,338 citations
TL;DR: In this article, high-resolution oxygen isotope (δ18O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N.
Abstract: High-resolution oxygen isotope (δ18O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N. δ18O values reflect the amount of precipitation which is primarily controlled by the mean latitudinal position of the ITCZ and dynamics of the Indian summer monsoon (ISM). During the early Holocene rapidly decreasing δ18O values indicate a rapid northward displacement in the mean latitudinal position of the summer ITCZ and the associated ISM rainfall belt, with decadal- to centennial-scale changes in monsoon precipitation correlating well with high-latitude temperature variations recorded in Greenland ice cores. During the middle to late Holocene the summer ITCZ continuously migrated southward and monsoon precipitation decreased gradually in response to decreasing solar insolation, a trend, which is also recorded in other monsoon records from the Indian and East Asian monsoon domains. Importantly, there is no evidence for an abrupt middle Holocene weakening in monsoon precipitation. Although abrupt monsoon events are apparent in all monsoon records, they are short-lived and clearly superimposed on the long-term trend of decreasing monsoon precipitation. For the late Holocene there is an anti-correlation between ISM precipitation in Oman and inter-monsoon (spring/autumn) precipitation on Socotra, revealing a possible long-term change in the duration of the summer monsoon season since at least 4.5 ka BP. Together with the progressive shortening of the ISM season, gradual southward retreat of the mean summer ITCZ and weakening of the ISM, the total amount of precipitation decreased in those areas located at the northern fringe of the Indian and Asian monsoon domains, but increased in areas closer to the equator.
804 citations
TL;DR: A continuous record of atmospheric lead since 12,370 carbon-14 years before the present (14C yr BP) is preserved in a Swiss peat bog, indicating the beginning of lead pollution from mining and smelting, and anthropogenic sources have dominated lead emissions ever since.
Abstract: A continuous record of atmospheric lead since 12,370 carbon-14 years before the present (14C yr BP) is preserved in a Swiss peat bog. Enhanced fluxes caused by climate changes reached their maxima 10,590 14C yr BP (Younger Dryas) and 823014C yr BP. Soil erosion caused by forest clearing and agricultural tillage increased lead deposition after 532014C yr BP. Increasing lead/scandium and decreasing lead-206/lead-207 beginning 3000 14C yr BP indicate the beginning of lead pollution from mining and smelting, and anthropogenic sources have dominated lead emissions ever since. The greatest lead flux (15.7 milligrams per square meter per year in A.D. 1979) was 1570 times the natural, background value (0.01 milligram per square meter per year from 8030 to 5320 14C yr BP).
683 citations
01 Jan 1998
TL;DR: The greatest lead sux (15.7 milligrams persquare meter per year in A.D. 1979) was 1570 times the natural, backgroundvalue (0.01 milligram per square meters per year from 8030 to 5320.
Abstract: C yr BP indicate the beginningof lead pollution from mining and smelting, and anthropogenic sources havedominated lead emissions ever since. The greatest lead sux (15.7 milligrams persquare meter per year in A.D. 1979) was 1570 times the natural, backgroundvalue (0.01 milligram per square meter per year from 8030 to 5320
641 citations
Cited by
More filters
01 Jan 1989
TL;DR: In this article, trace-element data for mid-ocean ridge basalts and ocean island basalts are used to formulate chemical systematics for oceanic basalts, interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone.
Abstract: Summary Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ≈ Rb ≈ (≈ Tl) ≈ Ba(≈ W) > Th > U ≈ Nb = Ta ≈ K > La > Ce ≈ Pb > Pr (≈ Mo) ≈ Sr > P ≈ Nd (> F) > Zr = Hf ≈ Sm > Eu ≈ Sn (≈ Sb) ≈ Ti > Dy ≈ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs. In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (⩽1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (⩽2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.
17,505 citations
16,941 citations
TL;DR: In this paper, the authors compared the relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites and found that the most consistent composition of the Earth's core is derived from the seismic profile and its interpretation, compared with primitive meteorites, and chemical and petrological models of peridotite-basalt melting relationships.
Abstract: Compositional models of the Earth are critically dependent on three main sources of information: the seismic profile of the Earth and its interpretation, comparisons between primitive meteorites and the solar nebula composition, and chemical and petrological models of peridotite-basalt melting relationships. Whereas a family of compositional models for the Earth are permissible based on these methods, the model that is most consistent with the seismological and geodynamic structure of the Earth comprises an upper and lower mantle of similar composition, an FeNi core having between 5% and 15% of a low-atomic-weight element, and a mantle which, when compared to CI carbonaceous chondrites, is depleted in Mg and Si relative to the refractory lithophile elements. The absolute and relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites are compared. The bulk composition of an average CI carbonaceous chondrite is defined from previous compilations and from the refractory element compositions of different groups of chondrites. The absolute uncertainties in their refractory element compositions are evaluated by comparing ratios of these elements. These data are then used to evaluate existing models of the composition of the Silicate Earth. The systematic behavior of major and trace elements during differentiation of the mantle is used to constrain the Silicate Earth composition. Seemingly fertile peridotites have experienced a previous melting event that must be accounted for when developing these models. The approach taken here avoids unnecessary assumptions inherent in several existing models, and results in an internally consistent Silicate Earth composition having chondritic proportions of the refractory lithophile elements at ∼ 2.75 times that in CI carbonaceous chondrites. Element ratios in peridotites, komatiites, basalts and various crustal rocks are used to assess the abundances of both non-lithophile and non-refractory elements in the Silicate Earth. These data provide insights into the accretion processes of the Earth, the chemical evolution of the Earth's mantle, the effect of core formation, and indicate negligible exchange between the core and mantle throughout the geologic record (the last 3.5 Ga). The composition of the Earth's core is poorly constrained beyond its major constituents (i.e. an FeNi alloy). Density contrasts between the inner and outer core boundary are used to suggest the presence (∼ 10 ± 5%) of a light element or a combination of elements (e.g., O, S, Si) in the outer core. The core is the dominant repository of siderophile elements in the Earth. The limits of our understanding of the core's composition (including the light-element component) depend on models of core formation and the class of chondritic meteorites we have chosen when constructing models of the bulk Earth's composition. The Earth has a bulk Fe Al of ∼ 20 ± 2, established by assuming that the Earth's budget of Al is stored entirely within the Silicate Earth and Fe is partitioned between the Silicate Earth (∼ 14%) and the core (∼ 86%). Chondritic meteorites display a range of Fe Al ratios, with many having a value close to 20. A comparison of the bulk composition of the Earth and chondritic meteorites reveals both similarities and differences, with the Earth being more strongly depleted in the more volatile elements. There is no group of meteorites that has a bulk composition matching that of the Earth's.
9,413 citations
TL;DR: In this paper, a new calculation of the crustal composition is based on the proportions of upper crust (UC) to felsic lower crust (FLC) to mafic lower-crust (MLC) of about 1.6:0.4.
Abstract: A new calculation of the crustal composition is based on the proportions of upper crust (UC) to felsic lower crust (FLC) to mafic lower crust (MLC) of about 1:0.6:0.4. These proportions are derived from a 3000 km long refraction seismic profile through western Europe (EGT) comprising 60% old shield and 40% younger fold belt area with about 40 km average Moho depth. A granodioritic bulk composition of the UC in major elements and thirty-two minor and trace elements was calculated from the Canadian Shield data (Shaw et al., 1967, 1976). The computed abundance of thirty-three additional trace elements in the UC is based on the following proportions of major rock units derived from mapping: 14% sedimentary rocks, 25% granites, 20% granodiorites, 5% tonalites, 6% gabbros, and 30% gneisses and mica schists. The composition of FLC and MLC in major and thirty-six minor and trace elements is calculated from data on felsic granulite terrains and mafic xenoliths, respectively, compiled by Rudnick and Presper (1990). More than thirty additional trace element abundances in FLC and MLC were computed or estimated from literature data. The bulk continental crust has a tonalitic and not a dioritic composition with distinctly higher concentrations of incompatible elements including the heat producing isotopes in our calculation. A dioritic bulk crust was suggested by Taylor and McLennan (1985). The amount of tonalite in the crust requires partial melting of mafic rocks with about 100 km thickness (compared with about 7 km in the present MLC) and water supply from dehydrated slabs and mafic intrusions. At the relatively low temperatures of old crustal segments MLC was partly converted into eclogite which could be recycled into the upper mantle under favourable tectonic conditions. The chemical fractionation of UC against FLC + MLC was caused by granitoidal partial melts and by mantle degassing which has controlled weathering and accumulation of volatile compounds close to the Earth's surface.
4,815 citations
TL;DR: In this paper, the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses are reported.
Abstract: We report here the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses. Additional data were also collected for the major, minor and trace element contents of the three selected sample sets. A total of five large zircon grains (masses between 0.5 and 238 g) were selected for this study, representing three different suites of zircons with ages of 1065 Ma, 2.5 Ma and 0.9 Ma. Geochemical laboratories can obtain these materials by contacting Geostandards Newsletter.
4,139 citations