scispace - formally typeset
Search or ask a question
Author

Jan Kramers

Bio: Jan Kramers is an academic researcher from University of Johannesburg. The author has contributed to research in topics: Metamorphism & Craton. The author has an hindex of 56, co-authored 175 publications receiving 20428 citations. Previous affiliations of Jan Kramers include University of Liverpool & Leipzig University.
Topics: Metamorphism, Craton, Cave, Granulite, Zircon


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded.
Abstract: Following the publication (Granger DE et al., Nature 2015;522:85–88) of an 26Al/10Be burial isochron age of 3.67±0.16 Ma for the sediments encasing hominin fossil StW573 (‘Little Foot’), we consider data on chert samples presented in that publication to explore alternative age interpretations. 10Be and 26Al concentrations determined on individual chert fragments within the sediments were calculated back in time, and data from one of these fragments point to a maximum age of 2.8 Ma for the sediment package and therefore also for the fossil. An alternative hypothesis is explored, which involves re-deposition and mixing of sediment that had previously collected over time in an upper chamber, which has since been eroded. We show that it is possible for such a scenario to yield ultimately an isochron indicating an apparent age much older than the depositional age of the sediments around the fossil. A possible scenario for deposition of StW573 in Member 2 would involve the formation of an opening between the Silberberg Grotto and an upper chamber. Not only could such an opening have acted as a death trap, but it could also have disturbed the sedimentological balance in the cave, allowing unconsolidated sediment to be washed into the Silberberg Grotto. This two-staged burial model would thus allow a younger age for the fossil, consistent with the sedimentology of the deposit. This alternative age is also not in contradiction to available faunal and palaeomagnetic data.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the possible drawdown of a massive CO2 atmosphere in early Earth history is discussed using two working hypotheses: first, that this removal of CO2 from the atmosphere occurred mainly via silicate weathering; second, that crust-to-mantle recycling rates found from forward modelling of crust- mantle history can be used to estimate rates of this ancient silicate washing.
Abstract: Abstract The possible drawdown of a massive CO2 atmosphere in early Earth history is discussed using two working hypotheses: first, that this removal of CO2 from the atmosphere occurred mainly via silicate weathering; second, that crust-to-mantle recycling rates found from forward modelling of crust-mantle history can be used to estimate rates of this ancient silicate weathering. Previous U-Th-Pb and Sm-Nd forward modelling efforts are reviewed, from which it was concluded that an insignificant amount of continental crust existed at 4.4 Ga, i.e. so-called ‘no-growth models’ for the continental crust appear untenable. New modelling carried out is based on a crustal growth curve starting with zero mass at 4.2 Ga and reaching 75% of the present crust mass by 2 Ga. It concerns variations in crust-to-mantle recycling rates through geological time. Best fits to isotope data are obtained if it is assumed that erosion rates (mass removal per unit surface) were approximately constant from early Archaean time to the present. From the results it can be estimated that drawdown of a massive CO2 atmosphere by silicate weathering could have been completed by the end of Archaean time at the earliest, and about 1.5 Ga ago at the latest.

26 citations

Journal ArticleDOI
TL;DR: The Nhlangano gneiss dome has features in common with migmatite-cored metamorphic core complexes as discussed by the authors, and its emplacement points to tectonic instability of the eastern part of the Kaapvaal Craton in the Neoarchaean.

25 citations

Journal ArticleDOI
TL;DR: The ages of the Lueshe, Kirumba and Numbi alkaline and carbonatitic complexes have been determined at 822±120 Ma, 803±22 Ma and 830 ± 51 Ma, respectively, with initial 87Sr86Sr ratios around 0.703.

24 citations

Journal ArticleDOI
TL;DR: In this article, a gold sample was degassed in a silica glass tube from which the U lost from the gold on melting can be recovered, assuming complete retentivity of 4He★.

24 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, trace-element data for mid-ocean ridge basalts and ocean island basalts are used to formulate chemical systematics for oceanic basalts, interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone.
Abstract: Summary Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ≈ Rb ≈ (≈ Tl) ≈ Ba(≈ W) > Th > U ≈ Nb = Ta ≈ K > La > Ce ≈ Pb > Pr (≈ Mo) ≈ Sr > P ≈ Nd (> F) > Zr = Hf ≈ Sm > Eu ≈ Sn (≈ Sb) ≈ Ti > Dy ≈ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs. In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (⩽1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (⩽2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.

19,221 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared the relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites and found that the most consistent composition of the Earth's core is derived from the seismic profile and its interpretation, compared with primitive meteorites, and chemical and petrological models of peridotite-basalt melting relationships.

10,830 citations

Journal ArticleDOI
TL;DR: In this paper, a new calculation of the crustal composition is based on the proportions of upper crust (UC) to felsic lower crust (FLC) to mafic lower-crust (MLC) of about 1.6:0.4.

5,317 citations

Journal ArticleDOI
TL;DR: In this paper, the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses are reported.
Abstract: We report here the results of a study to develop natural zircon geochemical standards for calibrating the U-(Th)-Pb geochronometer and Hf isotopic analyses. Additional data were also collected for the major, minor and trace element contents of the three selected sample sets. A total of five large zircon grains (masses between 0.5 and 238 g) were selected for this study, representing three different suites of zircons with ages of 1065 Ma, 2.5 Ma and 0.9 Ma. Geochemical laboratories can obtain these materials by contacting Geostandards Newsletter.

4,845 citations