scispace - formally typeset
Search or ask a question
Author

Jan Laufer

Bio: Jan Laufer is an academic researcher from Martin Luther University of Halle-Wittenberg. The author has contributed to research in topics: Photoacoustic spectroscopy & Photoacoustic effect. The author has an hindex of 26, co-authored 93 publications receiving 4330 citations. Previous affiliations of Jan Laufer include Charité & Technical University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: This topic, known as quantitative photoacoustic imaging, is reviewed here and the inverse problems involved are described, their nature is discussed, proposed solution techniques and their limitations are explained, and the remaining unsolved challenges are introduced.
Abstract: Obtaining absolute chromophore concentrations from photoacoustic images obtained at multiple wavelengths is a nontrivial aspect of photoacoustic imaging but is essential for accurate functional and molecular imaging. This topic, known as quantitative photoacoustic imaging, is reviewed here. The inverse problems involved are described, their nature (nonlinear and ill-posed) is discussed, proposed solution techniques and their limitations are explained, and the remaining unsolved challenges are introduced.

602 citations

Journal ArticleDOI
TL;DR: It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.
Abstract: A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 microm with an optically defined element size of 64 microm. Two sensors were used, one with a 22 microm thick polymer film spacer and the other with a 38 mum thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 microm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 microm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 microm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

531 citations

Journal ArticleDOI
TL;DR: Deep photoacoustic imaging of mammalian cells featuring genetically encoded contrast is reported, and the results are reported to be consistent with previous studies of this type of imaging.
Abstract: Deep photoacoustic imaging of mammalian cells featuring genetically encoded contrast is reported.

379 citations

Journal ArticleDOI
TL;DR: A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed and was found to compare favourably to that of a laboratory CO-oximeter.
Abstract: A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO(2)) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO(2)) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO(2) and HHb, total haemoglobin concentration and SO(2). The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of +/-3.8 g l(-1) (+/-58 microM) and +/-4.4 g l(-1) (+/-68 microM) for the HbO(2) and HHb concentrations respectively and +/-4% for SO(2) with an accuracy in the latter in the range -6%-+7%.

323 citations

Journal ArticleDOI
TL;DR: It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration.
Abstract: The application of a photoacoustic imaging instrument based upon a Fabry– Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy. M This article features online multimedia enhancements (Some figures in this article are in colour only in the electronic version)

310 citations


Cited by
More filters
Journal ArticleDOI
23 Mar 2012-Science
TL;DR: A review of the state of the art of photoacoustic tomography for both biological and clinical studies can be found in this paper, where the authors discuss the current state-of-the-art and discuss future prospects.
Abstract: Photoacoustic tomography (PAT) can create multiscale multicontrast images of living biological structures ranging from organelles to organs. This emerging technology overcomes the high degree of scattering of optical photons in biological tissue by making use of the photoacoustic effect. Light absorption by molecules creates a thermally induced pressure jump that launches ultrasonic waves, which are received by acoustic detectors to form images. Different implementations of PAT allow the spatial resolution to be scaled with the desired imaging depth in tissue while a high depth-to-resolution ratio is maintained. As a rule of thumb, the achievable spatial resolution is on the order of 1/200 of the desired imaging depth, which can reach up to 7 centimeters. PAT provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. We review the state of the art of PAT for both biological and clinical studies and discuss future prospects.

3,518 citations

Journal ArticleDOI
TL;DR: The underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.
Abstract: Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.

1,793 citations

Journal ArticleDOI
TL;DR: By comparison with one-step, FFT-based reconstruction, time reversal is shown to be sufficiently general that it can also be used for finite-sized planar measurement surfaces and the optimization of computational speed is demonstrated through parallel execution using a graphics processing unit.
Abstract: A new, freely available third party MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields is described. The toolbox, named k-Wave, is designed to make realistic photoacoustic modeling simple and fast. The forward simulations are based on a k-space pseudo-spectral time domain solution to coupled first-order acoustic equations for homogeneous or heterogeneous media in one, two, and three dimensions. The simulation functions can additionally be used as a flexible time reversal image reconstruction algorithm for an arbitrarily shaped measurement surface. A one-step image reconstruction algorithm for a planar detector geometry based on the fast Fourier transform (FFT) is also included. The architecture and use of the toolbox are described, and several novel modeling examples are given. First, the use of data interpolation is shown to considerably improve time reversal reconstructions when the measurement surface has only a sparse array of detector points. Second, by comparison with one-step, FFT-based reconstruction, time reversal is shown to be sufficiently general that it can also be used for finite-sized planar measurement surfaces. Last, the optimization of computational speed is demonstrated through parallel execution using a graphics processing unit.

1,629 citations

Patent
14 May 2004
TL;DR: In this article, a system for endoscopic suturing is provided having an endoscope, such as a gastroscope, with a distal end (14b) locatable in the body of a patient and a flexible shaft (14a) extending to the distal extension of the endoscope.
Abstract: A system (10) for endoscopic suturing is provided having an endoscope (14), such as a gastroscope, with a distal end (14b) locatable in the body of a patient and a flexible shaft (14a) extending to the distal end, a flexible accessory tube (12) coupled to the endoscope (14) to flex relative to the endoscope's shaft (14a), and a tip (26) coupled to the shaft (14a) of the endoscope having an opening (26a) through which one end of the accessory tube (12) is received. A tissue suturing instrument (16) and a suture securing instrument (130) are provided each having a sufficiently flexible shaft locatable through the accessory tube (12).

1,305 citations

Journal ArticleDOI
TL;DR: PAT holds the promise of in vivo imaging at multiple length scales ranging from subcellular organelles to organs with the same contrast origin, an important application in multiscale systems biology research.
Abstract: Photoacoustic tomography (PAT) is probably the fastest-growing area of biomedical imaging technology, owing to its capacity for high-resolution sensing of rich optical contrast in vivo at depths beyond the optical transport mean free path (~1 mm in human skin). Existing high-resolution optical imaging technologies, such as confocal microscopy and two-photon microscopy, have had a fundamental impact on biomedicine but cannot reach the penetration depths of PAT. By utilizing low ultrasonic scattering, PAT indirectly improves tissue transparency up to 1000-fold and consequently enables deeply penetrating functional and molecular imaging at high spatial resolution. Furthermore, PAT promises in vivo imaging at multiple length-scales; it can image subcellular organelles to organs with the same contrast origin — an important application in multiscale systems biology research.

1,276 citations