scispace - formally typeset
Search or ask a question
Author

Jan Vanthienen

Bio: Jan Vanthienen is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Process mining & Decision table. The author has an hindex of 48, co-authored 291 publications receiving 10299 citations. Previous affiliations of Jan Vanthienen include The Catholic University of America.


Papers
More filters
Book ChapterDOI
Wil M. P. van der Aalst1, Wil M. P. van der Aalst2, A Arya Adriansyah1, Ana Karla Alves de Medeiros3, Franco Arcieri4, Thomas Baier5, Tobias Blickle6, Jagadeesh Chandra Bose1, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs1, Andrea Burattin7, Josep Carmona8, Malu Castellanos9, Jan Claes10, Jonathan Cook11, Nicola Costantini, Francisco Curbera12, Ernesto Damiani13, Massimiliano de Leoni1, Pavlos Delias, Boudewijn F. van Dongen1, Marlon Dumas14, Schahram Dustdar15, Dirk Fahland1, Diogo R. Ferreira16, Walid Gaaloul17, Frank van Geffen18, Sukriti Goel19, CW Christian Günther, Antonella Guzzo20, Paul Harmon, Arthur H. M. ter Hofstede2, Arthur H. M. ter Hofstede1, John Hoogland, Jon Espen Ingvaldsen, Koki Kato21, Rudolf Kuhn, Akhil Kumar22, Marcello La Rosa2, Fabrizio Maria Maggi1, Donato Malerba23, RS Ronny Mans1, Alberto Manuel, Martin McCreesh, Paola Mello24, Jan Mendling25, Marco Montali26, Hamid Reza Motahari-Nezhad9, Michael zur Muehlen27, Jorge Munoz-Gama8, Luigi Pontieri28, Joel Ribeiro1, A Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda29, Jim Sinur, Pnina Soffer30, Minseok Song31, Alessandro Sperduti7, Giovanni Stilo4, Casper Stoel, Keith D. Swenson21, Maurizio Talamo4, Wei Tan12, Christopher Turner32, Jan Vanthienen33, George Varvaressos, Eric Verbeek1, Marc Verdonk34, Roberto Vigo, Jianmin Wang35, Barbara Weber36, Matthias Weidlich37, Ton Weijters1, Lijie Wen35, Michael Westergaard1, Moe Thandar Wynn2 
01 Jan 2012
TL;DR: This manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users to increase the maturity of process mining as a new tool to improve the design, control, and support of operational business processes.
Abstract: Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

1,135 citations

Journal ArticleDOI
TL;DR: It is found that both the LS-SVM and neural network classifiers yield a very good performance, but also simple classifiers such as logistic regression and linear discriminant analysis perform very well for credit scoring.
Abstract: In this paper, we study the performance of various state-of-the-art classification algorithms applied to eight real-life credit scoring data sets. Some of the data sets originate from major Benelux and UK financial institutions. Different types of classifiers are evaluated and compared. Besides the well-known classification algorithms (eg logistic regression, discriminant analysis, k-nearest neighbour, neural networks and decision trees), this study also investigates the suitability and performance of some recently proposed, advanced kernel-based classification algorithms such as support vector machines and least-squares support vector machines (LS-SVMs). The performance is assessed using the classification accuracy and the area under the receiver operating characteristic curve. Statistically significant performance differences are identified using the appropriate test statistics. It is found that both the LS-SVM and neural network classifiers yield a very good performance, but also simple classifiers such as logistic regression and linear discriminant analysis perform very well for credit scoring.

906 citations

Journal ArticleDOI
TL;DR: Both the SVM and LS-SVM classifier with RBF kernel in combination with standard cross-validation procedures for hyperparameter selection achieve comparable test set performances, consistently very good when compared to a variety of methods described in the literature.
Abstract: In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of equations in the dual space. While the SVM classifier has a large margin interpretation, the LS-SVM formulation is related in this paper to a ridge regression approach for classification with binary targets and to Fisher's linear discriminant analysis in the feature space. Multiclass categorization problems are represented by a set of binary classifiers using different output coding schemes. While regularization is used to control the effective number of parameters of the LS-SVM classifier, the sparseness property of SVMs is lost due to the choice of the 2-norm. Sparseness can be imposed in a second stage by gradually pruning the support value spectrum and optimizing the hyperparameters during the sparse approximation procedure. In this paper, twenty public domain benchmark datasets are used to evaluate the test set performance of LS-SVM classifiers with linear, polynomial and radial basis function (RBF) kernels. Both the SVM and LS-SVM classifier with RBF kernel in combination with standard cross-validation procedures for hyperparameter selection achieve comparable test set performances. These SVM and LS-SVM performances are consistently very good when compared to a variety of methods described in the literature including decision tree based algorithms, statistical algorithms and instance based learning methods. We show on ten UCI datasets that the LS-SVM sparse approximation procedure can be successfully applied.

698 citations

Journal ArticleDOI
TL;DR: It is concluded that neural network rule extraction and decision tables are powerful management tools that allow us to build advanced and userfriendly decision-support systems for credit-risk evaluation.
Abstract: Credit-risk evaluation is a very challenging and important management science problem in the domain of financial analysis. Many classification methods have been suggested in the literature to tackle this problem. Neural networks, especially, have received a lot of attention because of their universal approximation property. However, a major drawback associated with the use of neural networks for decision making is their lack of explanation capability. While they can achieve a high predictive accuracy rate, the reasoning behind how they reach their decisions is not readily available. In this paper, we present the results from analysing three real-life credit-risk data sets using neural network rule extraction techniques. Clarifying the neural network decisions by explanatory rules that capture the learned knowledge embedded in the networks can help the credit-risk manager in explaining why a particular applicant is classified as either bad or good. Furthermore, we also discuss how these rules can be visualized as a decision table in a compact and intuitive graphical format that facilitates easy consultation. It is concluded that neural network rule extraction and decision tables are powerful management tools that allow us to build advanced and userfriendly decision-support systems for credit-risk evaluation.

504 citations

Journal ArticleDOI
TL;DR: This paper provides an overview of previous ant-based approaches to the classification task and compares them with state-of-the-art classification techniques, such as C4.5, RIPPER, and support vector machines in a benchmark study, and proposes a new AntMiner+.
Abstract: Ant colony optimization (ACO) can be applied to the data mining field to extract rule-based classifiers. The aim of this paper is twofold. On the one hand, we provide an overview of previous ant-based approaches to the classification task and compare them with state-of-the-art classification techniques, such as C4.5, RIPPER, and support vector machines in a benchmark study. On the other hand, a new ant-based classification technique is proposed, named AntMiner+. The key differences between the proposed AntMiner+ and previous AntMiner versions are the usage of the better performing MAX-MIN ant system, a clearly defined and augmented environment for the ants to walk through, with the inclusion of the class variable to handle multiclass problems, and the ability to include interval rules in the rule list. Furthermore, the commonly encountered problem in ACO of setting system parameters is dealt with in an automated, dynamic manner. Our benchmarking experiments show an AntMiner+ accuracy that is superior to that obtained by the other AntMiner versions, and competitive or better than the results achieved by the compared classification techniques.

427 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
Cynthia Rudin1
TL;DR: This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications whereinterpretable models could potentially replace black box models in criminal justice, healthcare and computer vision.
Abstract: Black box machine learning models are currently being used for high-stakes decision making throughout society, causing problems in healthcare, criminal justice and other domains. Some people hope that creating methods for explaining these black box models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practice and can potentially cause great harm to society. The way forward is to design models that are inherently interpretable. This Perspective clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare and computer vision. There has been a recent rise of interest in developing methods for ‘explainable AI’, where models are created to explain how a first ‘black box’ machine learning model arrives at a specific decision. It can be argued that instead efforts should be directed at building inherently interpretable models in the first place, in particular where they are applied in applications that directly affect human lives, such as in healthcare and criminal justice.

3,609 citations

01 Jan 2003

3,093 citations

Book
12 Nov 2002
TL;DR: Support Vector Machines Basic Methods of Least Squares Support Vector Machines Bayesian Inference for LS-SVM Models Robustness Large Scale Problems LS- sVM for Unsupervised Learning LS- SVM for Recurrent Networks and Control.
Abstract: Support Vector Machines Basic Methods of Least Squares Support Vector Machines Bayesian Inference for LS-SVM Models Robustness Large Scale Problems LS-SVM for Unsupervised Learning LS-SVM for Recurrent Networks and Control.

2,983 citations