scispace - formally typeset
Search or ask a question
Author

Jana Chrpová

Bio: Jana Chrpová is an academic researcher. The author has contributed to research in topics: Cultivar & Fusarium. The author has an hindex of 1, co-authored 1 publications receiving 903 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results of a collaborative integrated work which aims to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and to enhance the standardization of epidemiological data collection were described.
Abstract: Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.

936 citations

Journal ArticleDOI
TL;DR: In this article , the effect of PEF on mycotoxins present on malting barley was evaluated using ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry.

2 citations

Journal ArticleDOI
24 Nov 2022-Agronomy
TL;DR: In this article , the effects of drought and irrigation on spelt, einkorn wheat, and two common wheat cultivars were assessed in a field experiment in the years 2018-2021.
Abstract: Fluctuations in precipitation and higher evapotranspiration due to rising temperatures are reflected in reduced wheat yields, even in areas with a low historical incidence of drought. In this study, the effects of drought (S) and irrigation (IR) on spelt, einkorn wheat, and two common wheat cultivars were assessed in a field experiment in the years 2018–2021. Water availability was differentiated from the flowering stage using a mobile cover and drip irrigation. Grain yield, canopy temperature, and discrimination of 13C in grain (Δ 13C) were monitored. Drought reduced the average grain yield of common wheat to 5.24 t.ha−1, which was 67.00% of the rain-fed control (C) yield, and 62.09% of the irrigated wheat yield. For spelt and einkorn wheat, the average grain yield from stressed plants was 2.02 t.ha−1; this was 79.97% of the C-variant yield, and 70.82% of the IR-variant yield. Higher stand temperatures were an excellent indicator of water deficit in the stressed crops. The relationship between temperature and final grain yield in the monitored variants was always negative. In all years, discrimination of 13C in grain corresponded to water availability; in its effect on yields, the correlation was always positive. Between 2018 and 2020, spelt and einkorn exhibited lower Δ 13C in comparison with common wheat in all variants, suggesting a greater impact of differentiated water supply. The results of the experiment conclusively demonstrated systematic effects of drought after flowering upon yields and other studied characteristics.
Journal ArticleDOI
01 Jun 2022-Plants
TL;DR: In this article , the reaction of twenty-five winter wheat cultivars frequently grown in the Czech Republic to inoculation with Oculimacula yallundae (O. acuformis) and O. maculescu et al. was evaluated in small plot trials from 2019 to 2021.
Abstract: The reaction of twenty-five winter wheat cultivars frequently grown in the Czech Republic to inoculation with Oculimacula yallundae and Oculimacula acuformis was evaluated in small plot trials from 2019 to 2021. The eyespot infection assessment was carried out visually using symptoms on stem bases and quantitative real-time polymerase chain reaction (qPCR). The cultivars were also tested for the presence of the resistance gene Pch1 using the STS marker Xorw1. Statistical differences were found between cultivars and between years. The lowest mean level of eyespot infection (2019–2021) was visually observed in cultivar Annie, which possessed resistance gene Pch1, and in cultivar Julie. Cultivars Turandot and RGT Sacramento were the most susceptible to eyespot. The method qPCR was able to distinguish two eyespot pathogens. O. yallundae was detected in higher concentrations in inoculated plants compared with O. acuformis. The relationship between the eyespot symptoms and the pathogen’s DNA content in plant tissues followed a moderate linear regression only in 2021. The highest eyespot infection rate was in 2020 due to weather conditions suitable for the development of the disease.

Cited by
More filters
Journal ArticleDOI
TL;DR: The two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of biOREmediation, are maintained at optimal range.
Abstract: Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.

799 citations

Journal ArticleDOI
TL;DR: The clinical needs and challenges associated with treatment of acute and chronic infections and the drivers for phage encapsulation are looked at, as well as looking at promising new approaches for micro- and nanoencapsulation of phage and how these may address gaps in the field.

296 citations

Journal ArticleDOI
TL;DR: The latest progress on the anticancer activities of anthocyanins and the underlying molecular mechanisms is summarized using data from basic research in vitro and in vivo, from clinical trials and taking into account theory and practice.
Abstract: Anthocyanins are a class of water-soluble flavonoids, which show a range of pharmacological effects, such as prevention of cardiovascular disease, obesity control and antitumour activity. Their potential antitumour effects are reported to be based on a wide variety of biological activities including antioxidant; anti-inflammation; anti-mutagenesis; induction of differentiation; inhibiting proliferation by modulating signal transduction pathways, inducing cell cycle arrest and stimulating apoptosis or autophagy of cancer cells; anti-invasion; anti-metastasis; reversing drug resistance of cancer cells and increasing their sensitivity to chemotherapy. In this review, the latest progress on the anticancer activities of anthocyanins and the underlying molecular mechanisms is summarized using data from basic research in vitro and in vivo, from clinical trials and taking into account theory and practice. Linked Articles This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc

247 citations

Journal ArticleDOI
TL;DR: The world market for inoculants is explored, showing which bacteria are prominent as inoculant in different countries, and the main research strategies that might contribute to improve the use of microbial inocULants in agriculture are discussed.
Abstract: More than one hundred years have passed since the development of the first microbial inoculant for plants. Nowadays, the use of microbial inoculants in agriculture is spread worldwide for different crops and carrying different microorganisms. In the last decades, impressive progress has been achieved in the production, commercialization and use of inoculants. Nowadays, farmers are more receptive to the use of inoculants mainly because high-quality products and multi-purpose elite strains are available at the market, improving yields at low cost in comparison to chemical fertilizers. In the context of a more sustainable agriculture, microbial inoculants also help to mitigate environmental impacts caused by agrochemicals. Challenges rely on the production of microbial inoculants for a broader range of crops, and the expansion of the inoculated area worldwide, in addition to the search for innovative microbial solutions in areas subjected to increasing episodes of environmental stresses. In this review, we explore the world market for inoculants, showing which bacteria are prominent as inoculants in different countries, and we discuss the main research strategies that might contribute to improve the use of microbial inoculants in agriculture.

241 citations

Journal ArticleDOI
TL;DR: Preclinical and clinical evidence suggest that targeting the microbiota through prebiotic, probiotic, or dietary interventions may be an effective “psychobiotic” strategy for treating symptoms in mood, neurodevelopmental disorders, and neurodegenerative diseases.
Abstract: There is a growing appreciation of the role of the gut microbiota in all aspects of health and disease, including brain health. Indeed, roles for the bacterial commensals in various psychiatric and neurological conditions, such as depression, autism, stroke, Parkinson's disease, and Alzheimer's disease, are emerging. Microbiota dysregulation has been documented in all of these conditions or in animal models thereof. Moreover, depletion or modulation of the gut microbiota can affect the severity of the central pathology or behavioral deficits observed in a variety of brain disorders. However, the mechanisms underlying such effects are only slowly being unraveled. Additionally, recent preclinical and clinical evidence suggest that targeting the microbiota through prebiotic, probiotic, or dietary interventions may be an effective "psychobiotic" strategy for treating symptoms in mood, neurodevelopmental disorders, and neurodegenerative diseases.

226 citations