scispace - formally typeset
Search or ask a question
Author

Jana Kosecka

Bio: Jana Kosecka is an academic researcher from George Mason University. The author has contributed to research in topics: Object detection & Motion estimation. The author has an hindex of 45, co-authored 155 publications receiving 9087 citations. Previous affiliations of Jana Kosecka include Austrian Institute of Technology & University of Pennsylvania.


Papers
More filters
BookDOI
01 Jan 2004

1,103 citations

01 Jan 1992
TL;DR: The main focus of this paper is the presentation of the automata and formal language model for DES introduced by Raniadge and Wonham in 1985, suitable for the examination of some important control theoretic issues, and provides a good basis for modular synthesis of controllers.
Abstract: Discrete Event Systems (DES) are a special type of dynamic systems The "state" of these systems changes only at discrete instants of time and the term "event" is used to represent the occurrence of discontinuous changes (at possibly unknown intervals) Different Discrete Event Systems models are currently used for specification, verification, synthesis as well as for analysis and evaluation of different qualitative and quantitative properties of existing physical systems The main focus of this paper is the presentation of the automata and formal language model for DES introduced by Raniadge and Wonham in 1985 This model is suitable for the examination of some important control theoretic issues, such as controllability and observability from the qualitative point of view, and provides a good basis for modular synthesis of controllers We will also discuss an Extended State Machine and Real-Time Temporal Logic model introduced by Ostroff and Wonham in [OW87] It incorporates an explicit notion of time and means for specification and verification of discrete event systems using a temporal logic approach An attempt is made to compare this model of DES with other ones Comments University of Pennsylvania Department of Computer and Information Science Technical Report No MSCIS-92-35 This technical report is available at ScholarlyCommons: http://repositoryupennedu/cis_reports/523 Control of Discrete Event Systems MS-CIS-92-35 GRASP LAB 313

1,014 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this paper, a hybrid discrete-continuous loss is proposed to estimate 3D bounding box dimensions and geometric constraints provided by a 2D object bounding boxes. But this method requires a large amount of training data and is computationally expensive.
Abstract: We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark [2] both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors [4] and sub-category detection [23][24]. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset[26].

773 citations

Posted Content
TL;DR: Although conceptually simple, this method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
Abstract: We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.

608 citations

Posted Content
TL;DR: The present document summarizes the consensus recommendations of a working group to study empirical methodology in navigation research and discusses different problem statements and the role of generalization, present evaluation measures, and provides standard scenarios that can be used for benchmarking.
Abstract: Skillful mobile operation in three-dimensional environments is a primary topic of study in Artificial Intelligence. The past two years have seen a surge of creative work on navigation. This creative output has produced a plethora of sometimes incompatible task definitions and evaluation protocols. To coordinate ongoing and future research in this area, we have convened a working group to study empirical methodology in navigation research. The present document summarizes the consensus recommendations of this working group. We discuss different problem statements and the role of generalization, present evaluation measures, and provide standard scenarios that can be used for benchmarking.

544 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research, using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras and a high-precision GPS/IMU inertial navigation system.
Abstract: We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations, and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets, and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

7,153 citations

Book ChapterDOI
07 Oct 2012
TL;DR: The goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships, to better understand how 3D cues can best inform a structured 3D interpretation.
Abstract: We present an approach to interpret the major surfaces, objects, and support relations of an indoor scene from an RGBD image. Most existing work ignores physical interactions or is applied only to tidy rooms and hallways. Our goal is to parse typical, often messy, indoor scenes into floor, walls, supporting surfaces, and object regions, and to recover support relationships. One of our main interests is to better understand how 3D cues can best inform a structured 3D interpretation. We also contribute a novel integer programming formulation to infer physical support relations. We offer a new dataset of 1449 RGBD images, capturing 464 diverse indoor scenes, with detailed annotations. Our experiments demonstrate our ability to infer support relations in complex scenes and verify that our 3D scene cues and inferred support lead to better object segmentation.

4,827 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: This paper proposes the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images and uses 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance.
Abstract: Scene categorization is a fundamental problem in computer vision However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance We measure human scene classification performance on the SUN database and compare this with computational methods Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes

2,960 citations

Book
23 Dec 2007
TL;DR: Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis and will be of interest to applied mathematicians, engineers, and computer scientists.
Abstract: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

2,586 citations