scispace - formally typeset
Search or ask a question
Author

Jana Novovičová

Bio: Jana Novovičová is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Feature selection & Pattern recognition (psychology). The author has an hindex of 20, co-authored 42 publications receiving 4692 citations. Previous affiliations of Jana Novovičová include University of Surrey & Czechoslovak Academy of Sciences.

Papers
More filters
Journal ArticleDOI
TL;DR: Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, henceforth "floating" methods, are presented and are shown to give very good results and to be computationally more effective than the branch and bound method.

3,104 citations

Proceedings ArticleDOI
09 Oct 1994
TL;DR: The recently developed "floating search" algorithms are presented and modified to a more compact form facilitating their direct comparison with the well known (l,r) search.
Abstract: In this paper the recently developed "floating search" algorithms are presented and modified to a more compact form facilitating their direct comparison with the well known (l,r) search. The properties of the floating search methods are investigated, especially with respect to their tolerance to nonmonotonic criteria. Their computational efficiency is demonstrated by results on real data of high dimensionality.

368 citations

Journal ArticleDOI
TL;DR: A new suboptimal search strategy for feature selection that represents a more sophisticated version of “classical” floating search algorithms and facilitates finding a solution even closer to the optimal one.

336 citations

Journal ArticleDOI
01 Dec 2000
TL;DR: A new kernel rule has been developed for road sign classification using the Laplace probability density and an Expectation–Maximization algorithm is used to maximize the pseudo-likelihood function.
Abstract: Driver support systems (DSS) of intelligent vehicles will predict potentially dangerous situations in heavy traffic, help with navigation and vehicle guidance and interact with a human driver. Important information necessary for traffic situation understanding is presented by road signs. A new kernel rule has been developed for road sign classification using the Laplace probability density. Smoothing parameters of the Laplace kernel are optimized by the pseudo-likelihood cross-validation method. To maximize the pseudo-likelihood function, an Expectation–Maximization algorithm is used. The algorithm has been tested on a dataset with more than 4900 noisy images. A comparison to other classification methods is also given.

161 citations

Journal ArticleDOI
TL;DR: This work investigates the problem of evaluating the stability of feature selection processes yielding subsets of varying size and introduces several novel feature selection stability measures and adjusts some existing measures in a unifying framework that offers broad insight into the stability problem.
Abstract: Stability (robustness) of feature selection methods is a topic of recent interest, yet often neglected importance, with direct impact on the reliability of machine learning systems. We investigate the problem of evaluating the stability of feature selection processes yielding subsets of varying size. We introduce several novel feature selection stability measures and adjust some existing measures in a unifying framework that offers broad insight into the stability problem. We study in detail the properties of considered measures and demonstrate on various examples what information about the feature selection process can be gained. We also introduce an alternative approach to feature selection evaluation in the form of measures that enable comparing the similarity of two feature selection processes. These measures enable comparing, e.g., the output of two feature selection methods or two runs of one method with different parameters. The information obtained using the considered stability and similarity measures is shown to be usable for assessing feature selection methods (or criteria) as such.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the maximal statistical dependency criterion based on mutual information (mRMR) was proposed to select good features according to the maximal dependency condition. But the problem of feature selection is not solved by directly implementing mRMR.
Abstract: Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

8,078 citations

05 Aug 2003
TL;DR: This work derives an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection, and presents a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers).

7,075 citations

Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,670 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations