scispace - formally typeset
Search or ask a question
Author

Jana Orsavová

Bio: Jana Orsavová is an academic researcher from Tomas Bata University in Zlín. The author has contributed to research in topics: Chemistry & DPPH. The author has an hindex of 12, co-authored 25 publications receiving 1069 citations.
Topics: Chemistry, DPPH, Rutin, Food science, Medicine

Papers
More filters
Journal ArticleDOI
TL;DR: The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes for adults and mortality caused by coronary heart diseases (CHD) and cardiovascular diseases (CVD) in twelve countries has not been confirmed by Spearman’s correlations.
Abstract: Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs) of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC). Saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), palmitic acid (C16:0; 4.6%–20.0%), oleic acid (C18:1; 6.2%–71.1%) and linoleic acid (C18:2; 1.6%–79%), respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI), PUFAs (10.6%–786.8% ERDI), n-3 FAs (4.4%–117.1% ERDI) and n-6 FAs (1.8%–959.2% ERDI), expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI) for total fat (ERDI—37.7 kJ/g). The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI) for adults and mortality caused by coronary heart diseases (CHD) and cardiovascular diseases (CVD) in twelve countries has not been confirmed by Spearman’s correlations.

712 citations

Journal ArticleDOI
TL;DR: It was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values, and a linear relationship existed between ACW and phenolic contents (r = 0.99).
Abstract: The study objective was to investigate total phenolic content using Folin-Ciocalteu’s method, to assess nine phenols by HPLC, to determine antioxidant capacity of the water soluble compounds (ACW) by a photochemiluminescence method, and to calculate the correlation coefficients in commercial algal food products from brown (Laminaria japonica, Eisenia bicyclis, Hizikia fusiformis, Undaria pinnatifida) and red (Porphyra tenera, Palmaria palmata) seaweed, green freshwater algae (Chlorella pyrenoidosa), and cyanobacteria (Spirulina platensis). HPLC analysis showed that the most abundant phenolic compound was epicatechin. From spectrophotometry and ACW determination it was evident that brown seaweed Eisenia bicyclis was the sample with the highest phenolic and ACW values (193 mg·g−1 GAE; 7.53 µmol AA·g−1, respectively). A linear relationship existed between ACW and phenolic contents (r = 0.99). Some algal products seem to be promising functional foods rich in polyphenols.

304 citations

Journal ArticleDOI
TL;DR: The berries of A. melanocarpa, due to the presence and the high content of these bioactive components, exhibit a wide range of positive effects, such as strong antioxidant activity and potential medicinal and therapeutic benefits (gastroprotective, hepatoprotective, antiproliferative or anti-inflammatory activities).
Abstract: In recent years, growing attention has been focused on the utilization of natural sources of antioxidants in the prevention of chronic diseases. Black chokeberry (Aronia melanocarpa) represents a lesser known fruit species utilized mainly as juices, purees, jams, jellies and wine, as important food colorants or nutritional supplements. The fruit is valued as a great source of antioxidants, especially polyphenols, such as phenolic acids (neochlorogenic and chlorogenic acids) and flavonoids (anthocyanins, proanthocyanidins, flavanols and flavonols), particularly cyanidin-3-galactoside and cyanidin-3-arabinoside, as well as (−)-epicatechin units. The berries of A. melanocarpa, due to the presence and the high content of these bioactive components, exhibit a wide range of positive effects, such as strong antioxidant activity and potential medicinal and therapeutic benefits (gastroprotective, hepatoprotective, antiproliferative or anti-inflammatory activities). They could be also contributory toward the prevention of chronic diseases including metabolic disorders, diabetes and cardiovascular diseases, because of supportive impacts on lipid profiles, fasting plasma glucose and blood pressure levels.

135 citations

Book ChapterDOI
TL;DR: Seaweed is known as an abundant source of minerals and could be prospective as functional foods and also producers of mineral nutraceuticals.
Abstract: Seaweed is known as an abundant source of minerals. Mineral composition of seaweed is very changeable because of many exogenous and endogenous factors and differs also within the same species. Principally, seaweed is an excellent source of some essential elements. Mainly, iron and iodine are in high concentration. Seaweeds could be prospective as functional foods and also producers of mineral nutraceuticals.

78 citations

Journal ArticleDOI
TL;DR: Considering all analyzed factors and antioxidant activities determined by various methods (DPPH, ACW and ACL), red gooseberry Black Negus and black currant Otelo were the most significant cultivars.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Vitamin E acetate was associated with EVALI in a convenience sample of 51 patients in 16 states across the United States and was found in BAL fluid from the case patients or the comparator group.
Abstract: Background The causative agents for the current national outbreak of electronic-cigarette, or vaping, product use–associated lung injury (EVALI) have not been established. Detection of tox...

486 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of biodiesel production with a description of various kinds of feedstock used, their advantages and disadvantages, and a detailed description of different classes of different biodiesel, including a characterization, assessment of qualities and limitations, and quality analysis.
Abstract: The over-exploitation of non-renewable resources leads to the depletion of energy reserves, as well as a rise in the price of petroleum-based fuels. Thus, there is a need to find suitable and sustainable substitutes for conventional fuels. The main features required for an alternative fuel are availability and renewability, or lower dependence on restricted resources accompanied with no or lower pollution. Due to their eco-friendly and non-toxic nature, biodiesel has been attracting increasing interest. Biodiesel production can be accomplished using various raw materials, catalysts, and technologies. In recent years, nanocatalyst technology has been widely used for biodiesel production due to its numerous advantages, such as large surface area, reusability and high activity of the nanocatalyst. This review provides an overview of biodiesel production with a description of various kinds of feedstock used, their advantages and disadvantages. Further, it offers a detailed description of different classes of biodiesel, including a characterization, assessment of qualities and limitations, and quality analysis of each type. Various methodologies used for biodiesel production are also elucidated, focusing on the potential of nanocatalyst processes. The aspect of nanocatalyst regeneration and reuse is also considered. This review delivers a comprehensive overview of biodiesel synthesis by discussing recent trends and challenges in this field, which will further the development of economically sustainable biodiesel production.

402 citations

Journal ArticleDOI
TL;DR: This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications, and the advantages of open and closed growth systems.
Abstract: Microalgae represent a potential source of renewable nutrition and there is growing interest in algae-based dietary supplements in the form of whole biomass, e.g., Chlorella and Arthrospira, or purified extracts containing omega-3 fatty acids and carotenoids. The commercial production of bioactive compounds from microalgae is currently challenged by the biorefinery process. This review focuses on the biochemical composition of microalgae, the complexities of mass cultivation, as well as potential therapeutic applications. The advantages of open and closed growth systems are discussed, including common problems encountered with large-scale growth systems. Several methods are used for the purification and isolation of bioactive compounds, and many products from microalgae have shown potential as antioxidants and treatments for hypertension, among other health conditions. However, there are many unknown algal metabolites and potential impurities that could cause harm, so more research is needed to characterize strains of interest, improve overall operation, and generate safe, functional products.

321 citations

Journal ArticleDOI
TL;DR: The aim of this review is to do the state of the art of processes for exopolysaccharide production and extraction from microalgal biomass and the analytical strategies for their characterization.

302 citations

Journal ArticleDOI
TL;DR: This study discusses in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Abstract: Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.

267 citations