scispace - formally typeset
Search or ask a question
Author

Janani Srree Murallidharan

Bio: Janani Srree Murallidharan is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Boiling & Subcooling. The author has an hindex of 8, co-authored 22 publications receiving 133 citations. Previous affiliations of Janani Srree Murallidharan include Indian Institute of Technology Madras & Imperial College London.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate how the mass loss of a respiratory droplet and the evaporation mechanism of a thin liquid film are modified for the porous media, which leads to a faster decay of the coronavirus on such media.
Abstract: Previous studies reported that the drying time of a respiratory droplet on an impermeable surface along with a residual film left on it is correlated with the coronavirus survival time. Notably, earlier virus titer measurements revealed that the survival time is surprisingly less on porous surfaces such as paper and cloth than that on impermeable surfaces. Previous studies could not capture this distinct aspect of the porous media. We demonstrate how the mass loss of a respiratory droplet and the evaporation mechanism of a thin liquid film are modified for the porous media, which leads to a faster decay of the coronavirus on such media. While diffusion-limited evaporation governs the mass loss from the bulk droplet for the impermeable surface, a much faster capillary imbibition process dominates the mass loss for the porous material. After the bulk droplet vanishes, a thin liquid film remaining on the exposed solid area serves as a medium for the virus survival. However, the thin film evaporates much faster on porous surfaces than on impermeable surfaces. The aforesaid faster film evaporation is attributed to droplet spreading due to the capillary action between the contact line and fibers present on the porous surface and the modified effective wetted area due to the voids of porous materials, which leads to an enhanced disjoining pressure within the film, thereby accelerating the film evaporation. Therefore, the porous materials are less susceptible to virus survival. The findings have been compared with the previous virus titer measurements.

61 citations

Journal ArticleDOI
TL;DR: In this article, the authors extensively assess and validate the wall heat flux partitioning (WHFP) model in the coupled Eulerian-Eulerian Multiphase Flow (EEMF) method to simulate subcooled flow boiling conditions at high pressures.

55 citations

Journal ArticleDOI
30 Jun 2020-Langmuir
TL;DR: A finite-element based two-dimensional modeling in axisymmetric geometry has been found to capture the measurements with reasonable fidelity and the hypothesis considered in the present study corroborates well with a first approximation qualitative scaling analysis.
Abstract: The present study experimentally and numerically investigates the evaporation and resultant patterns of dried deposits of aqueous colloidal sessile droplets when the droplets are initially elevated to a high temperature before being placed on a substrate held at ambient temperature. The system is then released for natural evaporation without applying any external perturbation. Infrared thermography and optical profilometry are used as essential tools for interfacial temperature measurements and quantification of coffee-ring dimensions, respectively. Initially, a significant temperature gradient exists along the liquid-gas interface as soon as the droplet is deposited on the substrate, which triggers a Marangoni stress-induced recirculation flow directed from the top of the droplet toward the contact line along the liquid-gas interface. Thus, the flow is in the reverse direction to that seen in the conventional substrate heating case. Interestingly, this temperature gradient decays rapidly within the first 10% of the total evaporation time and the droplet-substrate system reaches thermal equilibrium with ambient thereafter. Despite the fast decay of the temperature gradient, the coffee-ring dimensions significantly diminish, leading to an inner deposit. A reduction of 50-70% in the coffee-ring dimensions is recorded by elevating the initial droplet temperature from 25 to 75 °C for suspended particle concentration varying between 0.05 and 1.0% v/v. This suppression of the coffee-ring effect is attributed to the fact that the initial Marangoni stress-induced recirculation flow continues until the last stage of evaporation, even after the interfacial temperature gradient vanishes. This is essentially a consequence of liquid inertia. Finally, a finite-element-based two-dimensional modeling in axisymmetric geometry is found to capture the measurements with reasonable fidelity and the hypothesis considered in the present study corroborates well with a first approximation qualitative scaling analysis. Overall, together with a new experimental condition, the present investigation discloses a distinct nature of Marangoni stress-induced flow in a drying droplet and its role in influencing the associated colloidal deposits, which was not explored previously. The insights gained from this study are useful to advance technical applications such as spray cooling, inkjet printing, bioassays, etc.

24 citations

Journal ArticleDOI
TL;DR: In this article, the authors used direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar) pressure, to obtain the kind of mechanistic information required for an Rensselaer Polytechnic Institute (RPI) type approach.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored the disjoining pressure-driven thin-film evaporation mechanism and thereby the virucidal properties of engineered surfaces with varied wettability and texture.
Abstract: Surface engineering is an emerging technology to design antiviral surfaces, especially in the wake of COVID-19 pandemic. However, there is yet no general understanding of the rules and optimized conditions governing the virucidal properties of engineered surfaces. The understanding is crucial for designing antiviral surfaces. Previous studies reported that the drying time of a residual thin-film after the evaporation of a bulk respiratory droplet on a smooth surface correlates with the coronavirus survival time. Recently, we [Chatterjee et al., Phys. Fluids. 33, 021701 (2021)] showed that the evaporation is much faster on porous than impermeable surfaces, making the porous surfaces lesser susceptible to virus survival. The faster evaporation on porous surfaces was attributed to an enhanced disjoining pressure within the thin-film due the presence of horizontally oriented fibers and void spaces. Motivated by this, we explore herein the disjoining pressure-driven thin-film evaporation mechanism and thereby the virucidal properties of engineered surfaces with varied wettability and texture. A generic model is developed which agrees qualitatively well with the previous virus titer measurements on nanostructured surfaces. Thereafter, we design model surfaces and report the optimized conditions for roughness and wettability to achieve the most prominent virucidal effect. We have deciphered that the optimized thin-film lifetime can be gained by tailoring wettability and roughness, irrespective of the nature of texture geometry. The present study expands the applicability of the process and demonstrates ways to design antiviral surfaces, thereby aiding to mitigate the spread of COVID-19.

19 citations


Cited by
More filters
01 Aug 1953
TL;DR: In this paper, a solution for the radius of the vapor bubble as a function of time is obtained which is valid for sufficiently large radius, since the radius at which it becomes valid is near the lower limit of experimental observation.
Abstract: The growth of a vapor bubble in a superheated liquid is controlled by three factors: the inertia of the liquid, the surface tension, and the vapor pressure. As the bubble grows, evaporation takes place at the bubble boundary, and the temperature and vapor pressure in the bubble are thereby decreased. The heat inflow requirement of evaporation, however, depends on the rate of bubble growth, so that the dynamic problem is linked with a heat diffusion problem. Since the heat diffusion problem has been solved, a quantitative formulation of the dynamic problem can be given. A solution for the radius of the vapor bubble as a function of time is obtained which is valid for sufficiently large radius. This asymptotic solution covers the range of physical interest since the radius at which it becomes valid is near the lower limit of experimental observation. It shows the strong effect of heat diffusion on the rate of bubble growth. Comparison of the predicted radius‐time behavior is made with experimental observations in superheated water, and very good agreement is found.

729 citations

Journal ArticleDOI
Mingjun Wang1, Wang Yingjie1, Wenxi Tian1, Suizheng Qiu1, Guanghui Su1 
TL;DR: In this paper, the latest progress of nuclear reactor thermal-hydraulic research using CFD method is outlined, especially at XJTU-NuTheL, where the mathematical models of complicate two-phase boiling phenomena and thermal hydraulic features under the motion conditions are established.

121 citations

Journal ArticleDOI
TL;DR: In this article, an improved mechanistic model for the bubble departure diameter during flow boiling is developed based on the balance of forces acting on a bubble at a single nucleation site, with a new equation governing bubble growth proposed.

85 citations

Journal ArticleDOI
TL;DR: In this paper, an Eulerian-Eulerian, two-fluid CFD model is evaluated over a large database of subcooled boiling flows, avoiding the rather popular case-by-case tuning of descriptive models to a limited number of experiments.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate how the mass loss of a respiratory droplet and the evaporation mechanism of a thin liquid film are modified for the porous media, which leads to a faster decay of the coronavirus on such media.
Abstract: Previous studies reported that the drying time of a respiratory droplet on an impermeable surface along with a residual film left on it is correlated with the coronavirus survival time. Notably, earlier virus titer measurements revealed that the survival time is surprisingly less on porous surfaces such as paper and cloth than that on impermeable surfaces. Previous studies could not capture this distinct aspect of the porous media. We demonstrate how the mass loss of a respiratory droplet and the evaporation mechanism of a thin liquid film are modified for the porous media, which leads to a faster decay of the coronavirus on such media. While diffusion-limited evaporation governs the mass loss from the bulk droplet for the impermeable surface, a much faster capillary imbibition process dominates the mass loss for the porous material. After the bulk droplet vanishes, a thin liquid film remaining on the exposed solid area serves as a medium for the virus survival. However, the thin film evaporates much faster on porous surfaces than on impermeable surfaces. The aforesaid faster film evaporation is attributed to droplet spreading due to the capillary action between the contact line and fibers present on the porous surface and the modified effective wetted area due to the voids of porous materials, which leads to an enhanced disjoining pressure within the film, thereby accelerating the film evaporation. Therefore, the porous materials are less susceptible to virus survival. The findings have been compared with the previous virus titer measurements.

61 citations