scispace - formally typeset
Search or ask a question

Showing papers by "Jane C. Marks published in 1996"


Journal ArticleDOI
TL;DR: It is suggested that a correlation should exist between mating system and ploidy level, with outcrossing favouring diploid life cycles and inbreeding or asexual reproduction favouring haploids life cycles.
Abstract: According to the ‘masking hypothesis’, diploids gain an immediate fitness advantage over haploids because diploids, with two copies of every gene, are better able to survive the effects of deleterious recessive mutations. Masking in diploids is, however, a double-edged sword: it allows mutations to persist over time. In contrast, deleterious mutations are revealed in haploid individuals and are more rapidly eliminated by selection, creating genetic associations that are favourable to haploidy. We model various mating schemes and show that assortative mating, selfing, and apomixis maintain the genetic associations that favour haploidy. These results suggest that a correlation should exist between mating system and ploidy level, with outcrossing favouring diploid life cycles and inbreeding or asexual reproduction favouring haploid life cycles. This prediction can be tested in groups, such as the Chlorophyta, with extensive variation both in life cycle and in reproductive system. Confirming or rejecting this prediction in natural populations would constitute the first empirical test of the masking hypothesis as a force shaping the evolution of life cycles.

64 citations


Journal ArticleDOI
TL;DR: Nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron of freshwater Cladophora species from a wide range of habitats and geographic locations are determined.
Abstract: Freshwater species of Cladophora (Chlorophyta) are globally distributed and occupy an unusually wide range of ecological habitats. Delineating species is difficult because most easily observed morphological traits are highly variable and because sexual reproduction has not been clearly documented. Synthesizing ecological data on freshwater Cladophora species is problematic because it is unclear whether freshwater Cladophora species comprise many genetically distinct species or a few ecologically and morphologically variable and/or plastic species. We determined nucleotide sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal cistron of freshwater Cladophora species from a wide range of habitats and geographic locations. We compared these sequences to those derived from culture collections of C. fracta and C. glomerata, the two most commonly reported freshwater Cladophora species. Cladophora fracta and C. glomerata had very similar ITS sequences (95.3%). All other sequences were identical to those from the C. fracta or C. glomerata culture collections with the exception of one California sample that was similar to both C. fracta (95.6%) and C. glomerata (92.4%). ITS genotypes did not correlate with morphology or geography. This analysis shows that common freshwater Cladophora species comprise very few (possibly one) ecologically and morphologically variable species.

34 citations