scispace - formally typeset
Search or ask a question

Showing papers by "Jane C. Marks published in 2008"


Journal ArticleDOI
TL;DR: In this paper, the authors used a multivariate approach to examine how structural and functional attributes of streams are related to catchment variables, including land use, and found that variations in structural and function parameters were strongly related to these land use gradients.
Abstract: Summary 1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alteration and algal biomass. Functional parameters, including metrics of nutrient retention and metabolism, are now being widely used as indicators of stream condition. 2. Within this hierarchical context, we used a multivariate approach to examine how structural and functional (i.e. nutrient retention and metabolism) attributes of streams are related to catchment variables, including land use. The study was done in 13 streams located within a single Mediterranean catchment, but draining sub-catchments with contrasting land use. 3. At the catchment scale, results showed two contrasting land use gradients: (i) from forested- to urban-dominated catchments and (ii) from low to moderate agricultural-dominated catchments. Variation in structural and functional parameters was strongly related to these land use gradients. Specifically, NH4+ demand (measured as the uptake velocity, Vf) decreased along the gradient from forested- to urban-dominated catchments primarily in response to increases in stream nutrient concentrations [NH4+, dissolved organic nitrogen (DON) and carbon (DOC)]. Both primary production and respiration increased along the gradient of agricultural development in response to increases in algal biomass (chlorophyll a). Soluble reactive phosphorus demand was not related to any of the land use gradients. 4. Our results illustrate the connections among factors operating at different spatial scales (i.e. from catchments to streams) and their distinct influence on stream ecosystem function. Managers should take into consideration these connections when designing stream management and restoration plans. Because ecologically successful stream management and restoration is expected to restore function as well as structure to streams, the use of appropriate measures of functional processes is required. Nutrient retention and metabolism parameters are good candidates to fill this gap.

92 citations



Journal ArticleDOI
TL;DR: Differences in foraging behavior between morphotypes and individual specializations within morphotypes were found; i.e. some individuals specialize on certain food resources by using a few feeding behaviors within a subset of microhabitats, whereas others employ a range feeding behaviors across many microhab itats.
Abstract: We examined foraging behavior (microhabitat use and feeding behavior) in a trophically polymorphic cichlid fish, Herichthys minckleyi, to address several questions regarding resource partitioning in this threatened species. These include: (1) do morphotypes demonstrate different foraging behaviors? (2) do individuals within a morphotype vary in their foraging behavior (e.g. are some individuals specialists, only using a subset of available resources, while other are generalists)? (3) do foraging behaviors vary between isolated pools? (4) do foraging behaviors vary across seasons? We quantified microhabitat use and feeding behavior for over 100 individuals (of two morphotypes) feeding freely in two isolated pools (populations) and across two seasons (winter and summer). We found differences in foraging behavior between morphotypes and individual specializations within morphotypes; i.e. some individuals specialize on certain food resources by using a few feeding behaviors within a subset of microhabitats, whereas others employ a range feeding behaviors across many microhabitats. Foraging behavior also varied between pools and across seasons. This spatial and temporal variation in foraging behavior and resource use may serve to maintain this polymorphism, as the relative fitness of the each morph may vary over space and time.

9 citations