scispace - formally typeset
Search or ask a question
Author

Jane C. Marks

Bio: Jane C. Marks is an academic researcher from Northern Arizona University. The author has contributed to research in topics: Plant litter & Ecosystem. The author has an hindex of 32, co-authored 85 publications receiving 3877 citations. Previous affiliations of Jane C. Marks include Royal Victoria Infirmary & Bowling Green State University.


Papers
More filters
Journal ArticleDOI
09 Mar 2016-PLOS ONE
TL;DR: This analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure.
Abstract: Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007-2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3-7 days for beetles trapped from 2012-2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors collected leaf litter from Populus fremontii, Alnus oblongifolia, and Platanus wrightii grown during an average precipitation year (2001) and a record drought year (2002) and performed an in-stream decomposition study using both litter types.
Abstract: Climate models predict that the southwestern United States will experience an increase in drought frequency and intensity with global climate change. We tested the hypothesis that leaf litter produced under natural drought conditions would have an altered litter chemistry profile and affect decomposition rates and macroinvertebrate colonization compared to non-drought conditions. To test this hypothesis we collected leaf litter from Populus fremontii, Alnus oblongifolia, and Platanus wrightii grown during an average precipitation year (2001) and a record drought year (2002) and performed an in-stream decomposition study using both litter types. Three major patterns emerged: 1) Drought conditions significantly altered litter chemistry for mature trees of three species; however, the direction and magnitude of change differed among species and litter chemicals; 2) Leaf litter mass loss was influenced by both differences among species and drought; yet, species effects were more pronounced over time than drought effects; and 3) After 69 days of decomposition, the structure of the macroinvertebrate community was uninfluenced by the drought effect on A. oblongifolia or P. wrightii litters, but there was a community-wide drought effect on macroinvertebrate communities colonizing P. fremontii litter. Many recent studies have explored the influence of drought on stream flow and water temperatures, but these results suggest that litter quality can change under different climatic conditions, but the overall decay of leaf material may not be dramatically altered by droughts. Understanding how forest-stream interactions may be altered by the various influences of climate change will allow for better predictions regarding how long-term disturbances may alter stream ecosystem functioning.

11 citations

Journal ArticleDOI

11 citations

Journal ArticleDOI
TL;DR: In this article, a series of three experiments designed to provide insight into Leptospira presence in the soil were performed to evaluate the role of rivers and water bodies in the epidemiology of leptospirosis.
Abstract: Leptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. To address this, we screened for Leptospira DNA in two rivers in rural Ecuador where Leptospirosis is endemic. We collected 112 longitudinal samples and recorded pH, temperature, river depth, precipitation, and dissolved oxygen. We also performed a series of three experiments designed to provide insight into Leptospira presence in the soil. In the first soil experiment, we characterized prevalence and co-occurrence of Leptospira with other bacterial taxa in the soil at dispersed sites along the rivers (n = 64). In the second soil experiment, we collected 24 river samples and 48 soil samples at three points along eight transects to compare the likelihood of finding Leptospira in the river and on the shore at different distances from the river. In a third experiment, we tested whether Leptospira presence is associated with soil moisture by collecting 25 soil samples from two different sites. In our river experiment, we found pathogenic Leptospira in only 4 (3.7%) of samples. In contrast, pathogenic Leptospira species were found in 22% of shore soil at dispersed sites, 16.7% of soil samples (compared to 4.2% of river samples) in the transects, and 40% of soil samples to test for associations with soil moisture. Our data are limited to two sites in a highly endemic area, but the scarcity of Leptospira DNA in the river is not consistent with the widespread contention of the importance of river water for leptospirosis transmission. While Leptospira may be shed directly into the river, onto the shores, or washed into the river from more remote sites, massive dilution and limited persistence in rivers may reduce the environmental load and therefore, the epidemiological significance of such sources. It is also possible that transmission may occur more frequently on shores where people are liable to be barefoot. Molecular studies that further explore the role of rivers and water bodies in the epidemiology of leptospirosis are needed.

10 citations

Journal ArticleDOI
TL;DR: Riparian plant species strongly influences stream bacterial communities via their leachate suggesting that alterations to the presence or abundance of riparian plant taxa may influence these communities and associated ecosystem processes.
Abstract: Leaf litter provides an important resource to forested stream ecosystems. During leaf fall a significant amount of dissolved organic carbon (DOC) enters streams as leaf leachate. We compared the effects of plant species and leaf leachate bioavailability on the composition of stream bacterial communities and rates of DOC decomposition. We used four common riparian tree species that varied in foliar chemistry, leachate optical properties, and litter decomposition rate. We used laboratory microcosms from two streams and amended with a standard concentration of DOC derived from leaf leachate of the four tree species. After 24 h, we measured rates of DOC biodegradation and determined the composition of the bacterial communities via bar-coded pyrosequencing of the 16S rRNA gene. The composition, diversity, and abundance of the bacterial community differed significantly among plant species from both streams. The phylogenetic distance of the different bacterial communities correlated with species-specific leachate optical properties and rates of DOC biodegradation. Highest rates of DOC decomposition were associated with high tannin and lignin leaf types. Results demonstrate that riparian plant species strongly influences stream bacterial communities via their leachate suggesting that alterations to the presence or abundance of riparian plant taxa may influence these communities and associated ecosystem processes.

10 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations