scispace - formally typeset
Search or ask a question
Author

Jane C. Marks

Bio: Jane C. Marks is an academic researcher from Northern Arizona University. The author has contributed to research in topics: Plant litter & Ecosystem. The author has an hindex of 32, co-authored 85 publications receiving 3877 citations. Previous affiliations of Jane C. Marks include Royal Victoria Infirmary & Bowling Green State University.


Papers
More filters
Journal Article
TL;DR: The interrelationship between the skin and the gut is complex as discussed by the authors, and just as the skin can affect the skin, so can the skin affect the gut: in fact, there are four ways in which diseases of skin and gut can be interrelated.
Abstract: The interrelationship between the gut and the skin is complex. It is certainly not a one-way system, and just as the gut can affect the skin so can the skin affect the gut: in fact there are four ways in which diseases of the skin and gut can be interrelated1' 2, namely, (1) malabsorption can cause a rash; (2) a rash can cause malabsorption; (3) skin abnormalities and malabsorption can have a common cause; and (4) skin disease and malabsorption can be related indirectly.

2 citations

Posted ContentDOI
25 Feb 2021-bioRxiv
TL;DR: This article showed that growth and carbon uptake were higher in predatory bacteria compared to non-predatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA.
Abstract: Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to non-predatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than non-predatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolfpack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than non-predators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from non-predators. This finding supports ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow, and that predatory bacteria influence element flow through microbial food webs.

1 citations

01 Jan 2005
TL;DR: In this paper, an observational study of all morphs (but focusing on the three most common, normal-bodied ones) in a single spring pool, Poza Mojarral Oeste, was conducted.
Abstract: Herichthys minckleyi is an endangered, trophically polymorphic cichlid endemic to the Cuatro Cienegas basin of Coahuila, Mexico. A molariform morph has stout pharyngeal teeth whereas a papilliform morph has numerous fine pharyngeal teeth. Individuals with intermediate pharyngeal dentition also exist, as does yet another morph, called piscivore. Previous studies indicated that morphs utilize different food sources, thus suggesting morph-specific spatial segregation, since food resource availability is spatially heterogeneous. We present data from an observational study of all morphs (but focusing on the three most common, normal-bodied ones ‐ molariform, papilliform and intermediate) in a single spring pool, Poza Mojarral Oeste. We analyzed morph distribution in relation to habitat types, and document morph-specific differences in feeding behavior. Spatio-temporal habitat partitioning was also investigated. Habitat use by molariform, papilliform, and intermediate morphs was found to be non-random. Morphs differed in habitat use, albeit with considerable overlap. Strong segregation among morphs was not detected in any season or time of day, but habitat use patterns varied seasonally within each morph and were consistently different among morphs. All morphs behave basically as feeding generalists. This endangered species may prove more difficult to manage than other, non-polymorphic species. It is clearly important to manage not only for the maintenance of the species, but also for maintenance of its different morphs, which our study indicates may each require different mixes of habitat types. We thus hypothesize that any changes in habitat heterogeneity will lead to altered proportions of the different morphs of the species.

1 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations