scispace - formally typeset
Search or ask a question
Author

Jane C. Marks

Bio: Jane C. Marks is an academic researcher from Northern Arizona University. The author has contributed to research in topics: Plant litter & Ecosystem. The author has an hindex of 32, co-authored 85 publications receiving 3877 citations. Previous affiliations of Jane C. Marks include Royal Victoria Infirmary & Bowling Green State University.


Papers
More filters
Journal ArticleDOI
01 Jul 2000-Oikos
TL;DR: It is suggested that hydrologic regime, rather than productivity, determines the functional length of this river food chain, and that differences among species within trophic levels was crucial in delineating the controlling interactions.
Abstract: The length of a river food chain changed from year to year, shifting with the hydrologic regime. During drought years, grazers suppressed algae across a nutrient gradient, while predators were functionally unimportant. Following flood disturbance, predators suppressed grazers, releasing algae. These results suggest that hydrologic regime, rather than productivity, determines the functional length of this river food chain. Within years, algae and grazer biomass responded to an experimental productivity gradient in patterns predicted by simple trophic models that assume efficient energy transfer. Understanding differences among species within trophic levels, however, was crucial in delineating the controlling interactions.

88 citations

Journal ArticleDOI
01 Dec 1992-Ecology
TL;DR: This work compares the vulnerability of tuft—weaving midges (naked or in algal tufts) to fish and predatory invertebrates, in field and laboratory experiments, and suggests that the vulnerab...
Abstract: Midge larvae (Diptera, Chironomidae) that weave filamentous algae into retreats of tufts, are dominant primary consumers in a river food web. In a previous study, densities of tuft—weaving midges increased in the presence of large fish. In the absence of large fish, midges decreased as densities of predatory invertebrates built up, and higher standing crops of algae were maintained. To examine the mechanisms underlying these dynamics, we compared the vulnerability of tuft—weaving midges (naked or in algal tufts) to fish and predatory invertebrates, in field and laboratory experiments. When midges were exposed for 1 h in the river to fish, 15 out of 15 midges in tufts survived, while 15 of 15 naked midges were consumed. Tufts afforded only partial protection to midges exposed to invertebrate predators, however. After 1 h, enhancement of survivorship by tufts was moderately significant for midges exposed to aeshnids, and insignificant for midges exposed to lestids and naucorids. We suggest that the vulnerab...

77 citations

Journal ArticleDOI
TL;DR: It is suspected that flexibility of the endosymbiont load can reduce the metabolic cost to the diatom if the endOSYmbionts are dependent on the di Atom for a resource.
Abstract: Diatoms of the family Epithemiaceae possess a unicellular nitrogen-fixing cyanobacterial endosymbiont. We investigated the potential of extracellular nitrogen and phosphorus concentrations to affect the endosymbiont load of Rhopalodia gibba O. Mull, and Epithemia turgida Ehr. in field and culture populations. In a growth chamber experiment, monoclonal cultures of R. gibba were exposed to three levels of nitrate-nitrogen. Nutrient-diffusing substrates were used in a lake environment to create nine microhabitats of varying nitrogen and phosphorus ratios for natural populations of R. gibba and E. turgida. The number of endosymbionts per diatom increased as ambient nitrogen became limiting; mean endosymbiont volume increased as nitrogen increased. The mean endosymbiont surface area: volume ratio decreased with increasing nitrogen. Total endosymbiont volume per diatom (the product of the number of endosymbionts per diatom and their individual biovolumes) did not have a simple response to increasing nitrogen. Phosphorus limitation uncoupled the relationship between endosymbiont load and nitrogen. We suspect that flexibility of the endosymbiont load can reduce the metabolic cost to the diatom if the endosymbionts are dependent on the diatom for a resource.

73 citations

Journal ArticleDOI
TL;DR: This work uses isotope incorporation within DNA molecules to model taxonspecific population growth in the presence of O-labeled water and applies this model to phylogenetic marker sequencing data collected from stable-isotope probing studies to estimate rates of growth, mortality, and turnover for individual microbial populations within soil assemblages.
Abstract: Understanding how population-level dynamics contribute to ecosystem-level processes is a primary focus of ecological research and has led to important breakthroughs in the ecology of macroscopic organisms. However, the inability to measure population-specific rates, such as growth, for microbial taxa within natural assemblages has limited ecologists’ understanding of how microbial populations interact to regulate ecosystem processes. Here, we use isotope incorporation within DNA molecules to model taxonspecific population growth in the presence of O-labeled water. By applying this model to phylogenetic marker sequencing data collected from stable-isotope probing studies, we estimate rates of growth, mortality, and turnover for individual microbial populations within soil assemblages. When summed across the entire bacterial community, our taxon-specific estimates are within the range of other whole-assemblage measurements of bacterial turnover. Because it can be applied to environmental samples, the approach we present is broadly applicable to measuring population growth, mortality, and associated biogeochemical process rates of microbial taxa for a wide range of ecosystems and can help reveal how individual microbial populations drive biogeochemical fluxes.

71 citations

Journal ArticleDOI
TL;DR: It is suggested that a correlation should exist between mating system and ploidy level, with outcrossing favouring diploid life cycles and inbreeding or asexual reproduction favouring haploids life cycles.
Abstract: According to the ‘masking hypothesis’, diploids gain an immediate fitness advantage over haploids because diploids, with two copies of every gene, are better able to survive the effects of deleterious recessive mutations. Masking in diploids is, however, a double-edged sword: it allows mutations to persist over time. In contrast, deleterious mutations are revealed in haploid individuals and are more rapidly eliminated by selection, creating genetic associations that are favourable to haploidy. We model various mating schemes and show that assortative mating, selfing, and apomixis maintain the genetic associations that favour haploidy. These results suggest that a correlation should exist between mating system and ploidy level, with outcrossing favouring diploid life cycles and inbreeding or asexual reproduction favouring haploid life cycles. This prediction can be tested in groups, such as the Chlorophyta, with extensive variation both in life cycle and in reproductive system. Confirming or rejecting this prediction in natural populations would constitute the first empirical test of the masking hypothesis as a force shaping the evolution of life cycles.

64 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations