scispace - formally typeset
Search or ask a question
Author

Jane Gitschier

Bio: Jane Gitschier is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Gene & Menkes disease. The author has an hindex of 53, co-authored 127 publications receiving 16176 citations. Previous affiliations of Jane Gitschier include Oregon Health & Science University & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A candidate gene (Mc1) for Menkes disease is isolated and qualitative or quantitative abnormalities in the mRNA in sixteen of twenty–one Menkes patients are found and predicted to be a P–type cation–transporting ATPase.
Abstract: Menkes disease is an X-linked disorder of copper transport characterized by progressive neurological degeneration and death in early childhood. We have isolated a candidate gene (Mc1) for Menkes disease and find qualitative or quantitative abnormalities in the mRNA in sixteen of twenty-one Menkes patients. Four patients lacking Mc1RNA showed rearrangements of the Menkes gene. The gene codes for a 1,500 amino acid protein, predicted to be a P-type cation-transporting ATPase. The gene product is most similar to a bacterial copper-transporting ATPase and additionally contains six putative metal-binding motifs at the N-terminus. The gene is transcribed in all cell types tested except liver, consistent with the expression of the Menkes defect.

1,316 citations

Journal ArticleDOI
TL;DR: It is suggested that the hephaestin protein is a multi–copper ferroxidase necessary for iron egress from intestinal enterocytes into the circulation and that it is an important link between copper and iron metabolism in mammals.
Abstract: Iron is essential for many cellular functions; consequently, disturbances of iron homeostasis, leading to either iron deficiency or iron overload, can have significant clinical consequences. Despite the clinical prevalence of these disorders, the mechanism by which dietary iron is absorbed into the body is poorly understood. We have identified a key component in intestinal iron transport by study of the sex-linked anaemia (sla) mouse, which has a block in intestinal iron transport. Mice carrying the sla mutation develop moderate to severe microcytic hypochromic anaemia. Although these mice take up iron from the intestinal lumen into mature epithelial cells normally, the subsequent exit of iron into the circulation is diminished. As a result, iron accumulates in enterocytes and is lost during turnover of the intestinal epithelium. Biochemical studies have failed to identify the underlying difference between sla and normal mice, therefore, we used a genetic approach to identify the gene mutant in sla mice. We describe here a novel gene, Heph, encoding a transmembrane-bound ceruloplasmin homologue that is mutant in the sla mouse and highly expressed in intestine. We suggest that the hephaestin protein is a multicopper ferroxidase necessary for iron egress from intestinal enterocytes into the circulation and that it is an important link between copper and iron metabolism in mammals.

1,055 citations

Journal ArticleDOI
01 Nov 1984-Nature
TL;DR: The complete 186,000 base-pair (bp) human factor VIII gene has been isolated and consists of 26 exons ranging in size from 69 to 3,106 bp and introns as large as 32.4 kilobases as mentioned in this paper.
Abstract: The complete 186,000 base-pair (bp) human factor VIII gene has been isolated and consists of 26 exons ranging in size from 69 to 3,106 bp and introns as large as 32.4 kilobases (kb). Nine kb of mRNA and protein-coding DNA has been sequenced and the mRNA termini have been mapped. The relationship between internal duplications in factor VIII and evolution of the gene is discussed.

988 citations

Journal ArticleDOI
TL;DR: An oligonucleotide hybridization procedure has been developed that eliminates the preferential melting of A X T versus G X C base pairs, allowing the stringency of the hybridization to be controlled as a function of probe length only.
Abstract: An oligonucleotide hybridization procedure has been developed that eliminates the preferential melting of A X T versus G X C base pairs, allowing the stringency of the hybridization to be controlled as a function of probe length only. This technique, which uses tetramethylammonium chloride, is especially helpful whenever a highly complex library is screened with a pool of oligonucleotide probes, which usually vary widely in base composition. The procedure can also be applied advantageously whenever an exact match to an oligonucleotide probe is desired, such as in screening for clones having as little as a single-base alteration generated by in vitro mutagenesis.

798 citations

Journal ArticleDOI
TL;DR: Evidence is presented to support a model based on the possibility of recombination between homologous sequences located in intron 22 and upstream of the factor VIII gene that leads to an inversion of all intervening DNA and a disruption of the gene.
Abstract: Mutations in the factor VIII gene have been discovered for barely more than half of the examined cases of severe haemophilia A. To account for the unidentified mutations, we propose a model based on the possibility of recombination between homologous sequences located in intron 22 and upstream of the factor VIII gene. Such a recombination would lead to an inversion of all intervening DNA and a disruption of the gene. We present evidence to support this model and describe a Southern blot assay that detects the inversion. These findings should be valuable for genetic prediction of haemophilia A in approximately 45% of families with severe disease.

782 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas, which are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumors.
Abstract: Because most colorectal carcinomas appear to arise from adenomas, studies of different stages of colorectal neoplasia may shed light on the genetic alterations involved in tumor progression. We looked for four genetic alterations (ras-gene mutations and allelic deletions of chromosomes 5, 17, and 18) in 172 colorectal-tumor specimens representing various stages of neoplastic development. The specimens consisted of 40 predominantly early-stage adenomas from 7 patients with familial adenomatous polyposis, 40 adenomas (19 without associated foci of carcinoma and 21 with such foci) from 33 patients without familial polyposis, and 92 carcinomas resected from 89 patients. We found that ras-gene mutations occurred in 58 percent of adenomas larger than 1 cm and in 47 percent of carcinomas. However, ras mutations were found in only 9 percent of adenomas under 1 cm in size. Sequences on chromosome 5 that are linked to the gene for familial adenomatous polyposis were not lost in adenomas from the patients with polyposis but were lost in 29 to 35 percent of adenomas and carcinomas, respectively, from other patients. A specific region of chromosome 18 was deleted frequently in carcinomas (73 percent) and in advanced adenomas (47 percent) but only occasionally in earlier-stage adenomas (11 to 13 percent). Chromosome 17p sequences were usually lost only in carcinomas (75 percent). The four molecular alterations accumulated in a fashion that paralleled the clinical progression of tumors. These results are consistent with a model of colorectal tumorigenesis in which the steps required for the development of cancer often involve the mutational activation of an oncogene coupled with the loss of several genes that normally suppress tumorigenesis.

6,309 citations

Journal ArticleDOI
01 Dec 1994-Nature
TL;DR: Production of interleukin-1 and tumour necrosis factor from stimulated human monocytes is inhibited by a new series of pyridinyl-imidazole compounds, suggesting that the CSBPs are critical for cytokine production.
Abstract: Production of interleukin-1 and tumour necrosis factor from stimulated human monocytes is inhibited by a new series of pyridinyl-imidazole compounds. Using radiolabelled and radio-photoaffinity-labelled chemical probes, the target of these compounds was identified as a pair of closely related mitogen-activated protein kinase homologues, termed CSBPs. Binding of the pyridinyl-imidazole compounds inhibited CSBP kinase activity and could be directly correlated with their ability to inhibit cytokine production, suggesting that the CSBPs are critical for cytokine production.

3,348 citations

Journal ArticleDOI
TL;DR: The ARMS (Amplification Refractory Mutation System) as discussed by the authors is a system that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis.
Abstract: We have improved the "polymerase chain reaction" (PCR) to permit rapid analysis of any known mutation in genomic DNA. We demonstrate a system, ARMS (Amplification Refractory Mutation System), that allows genotyping solely by inspection of reaction mixtures after agarose gel electrophoresis. The system is simple, reliable and non-isotopic. It will clearly distinguish heterozygotes at a locus from homozygotes for either allele. The system requires neither restriction enzyme digestion, allele-specific oligonucleotides as conventionally applied, nor the sequence analysis of PCR products. The basis of the invention is that unexpectedly, oligonucleotides with a mismatched 3'-residue will not function as primers in the PCR under appropriate conditions. We have analysed DNA from patients with alpha 1-antitrypsin (AAT) deficiency, from carriers of the disease and from normal individuals. Our findings are in complete agreement with allele assignments derived by direct sequencing of PCR products.

2,571 citations

Journal ArticleDOI
TL;DR: After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Abstract: The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.

2,430 citations