scispace - formally typeset
Search or ask a question
Author

Jane M. Andrews

Bio: Jane M. Andrews is an academic researcher from Royal Adelaide Hospital. The author has contributed to research in topics: Inflammatory bowel disease & Crohn's disease. The author has an hindex of 48, co-authored 298 publications receiving 12270 citations. Previous affiliations of Jane M. Andrews include St. Vincent's Health System & Health Science University.


Papers
More filters
Journal ArticleDOI
Luke Jostins1, Stephan Ripke2, Rinse K. Weersma3, Richard H. Duerr4, Dermot P.B. McGovern5, Ken Y. Hui6, James Lee7, L. Philip Schumm8, Yashoda Sharma6, Carl A. Anderson1, Jonah Essers9, Mitja Mitrovic3, Kaida Ning6, Isabelle Cleynen10, Emilie Theatre11, Sarah L. Spain12, Soumya Raychaudhuri9, Philippe Goyette13, Zhi Wei14, Clara Abraham6, Jean-Paul Achkar15, Tariq Ahmad16, Leila Amininejad17, Ashwin N. Ananthakrishnan9, Vibeke Andersen18, Jane M. Andrews19, Leonard Baidoo4, Tobias Balschun20, Peter A. Bampton21, Alain Bitton22, Gabrielle Boucher13, Stephan Brand23, Carsten Büning24, Ariella Cohain25, Sven Cichon26, Mauro D'Amato27, Dirk De Jong3, Kathy L Devaney9, Marla Dubinsky5, Cathryn Edwards28, David Ellinghaus20, Lynnette R. Ferguson29, Denis Franchimont17, Karin Fransen3, Richard B. Gearry30, Michel Georges11, Christian Gieger, Jürgen Glas22, Talin Haritunians5, Ailsa Hart31, Christopher J. Hawkey32, Matija Hedl6, Xinli Hu9, Tom H. Karlsen33, Limas Kupčinskas34, Subra Kugathasan35, Anna Latiano36, Debby Laukens37, Ian C. Lawrance38, Charlie W. Lees39, Edouard Louis11, Gillian Mahy40, John C. Mansfield41, Angharad R. Morgan29, Craig Mowat42, William G. Newman43, Orazio Palmieri36, Cyriel Y. Ponsioen44, Uroš Potočnik45, Natalie J. Prescott6, Miguel Regueiro4, Jerome I. Rotter5, Richard K Russell46, Jeremy D. Sanderson47, Miquel Sans, Jack Satsangi39, Stefan Schreiber20, Lisa A. Simms48, Jurgita Sventoraityte34, Stephan R. Targan, Kent D. Taylor5, Mark Tremelling49, Hein W. Verspaget50, Martine De Vos37, Cisca Wijmenga3, David C. Wilson39, Juliane Winkelmann51, Ramnik J. Xavier9, Sebastian Zeissig20, Bin Zhang25, Clarence K. Zhang6, Hongyu Zhao6, Mark S. Silverberg52, Vito Annese, Hakon Hakonarson53, Steven R. Brant54, Graham L. Radford-Smith55, Christopher G. Mathew12, John D. Rioux13, Eric E. Schadt25, Mark J. Daly2, Andre Franke20, Miles Parkes7, Severine Vermeire10, Jeffrey C. Barrett1, Judy H. Cho6 
Wellcome Trust Sanger Institute1, Broad Institute2, University of Groningen3, University of Pittsburgh4, Cedars-Sinai Medical Center5, Yale University6, University of Cambridge7, University of Chicago8, Harvard University9, Katholieke Universiteit Leuven10, University of Liège11, King's College London12, Université de Montréal13, New Jersey Institute of Technology14, Cleveland Clinic15, Peninsula College of Medicine and Dentistry16, Université libre de Bruxelles17, Aarhus University18, University of Adelaide19, University of Kiel20, Flinders University21, McGill University22, Ludwig Maximilian University of Munich23, Charité24, Icahn School of Medicine at Mount Sinai25, University of Bonn26, Karolinska Institutet27, Torbay Hospital28, University of Auckland29, Christchurch Hospital30, Imperial College London31, Queen's University32, University of Oslo33, Lithuanian University of Health Sciences34, Emory University35, Casa Sollievo della Sofferenza36, Ghent University37, University of Western Australia38, University of Edinburgh39, Queensland Health40, Newcastle University41, University of Dundee42, University of Manchester43, University of Amsterdam44, University of Maribor45, Royal Hospital for Sick Children46, Guy's and St Thomas' NHS Foundation Trust47, QIMR Berghofer Medical Research Institute48, Norfolk and Norwich University Hospital49, Leiden University50, Technische Universität München51, University of Toronto52, University of Pennsylvania53, Johns Hopkins University54, University of Queensland55
01 Nov 2012-Nature
TL;DR: A meta-analysis of Crohn’s disease and ulcerative colitis genome-wide association scans is undertaken, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls.
Abstract: Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

4,094 citations

Journal ArticleDOI
TL;DR: The largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases.

563 citations

Journal ArticleDOI
15 Jan 2019-JAMA
TL;DR: In this preliminary study of adults with mild to moderate UC, 1-week treatment with anaerobically prepared donor FMT compared with autologous FMT resulted in a higher likelihood of remission at 8 weeks.
Abstract: Importance High-intensity, aerobically prepared fecal microbiota transplantation (FMT) has demonstrated efficacy in treating active ulcerative colitis (UC). FMT protocols involving anaerobic stool processing methods may enhance microbial viability and allow efficacy with a lower treatment intensity. Objective To assess the efficacy of a short duration of FMT therapy to induce remission in UC using anaerobically prepared stool. Design, Setting, and Participants A total of 73 adults with mild to moderately active UC were enrolled in a multicenter, randomized, double-blind clinical trial in 3 Australian tertiary referral centers between June 2013 and June 2016, with 12-month follow-up until June 2017. Interventions Patients were randomized to receive either anaerobically prepared pooled donor FMT (n = 38) or autologous FMT (n = 35) via colonoscopy followed by 2 enemas over 7 days. Open-label therapy was offered to autologous FMT participants at 8 weeks and they were followed up for 12 months. Main Outcomes and Measures The primary outcome was steroid-free remission of UC, defined as a total Mayo score of ≤2 with an endoscopic Mayo score of 1 or less at week 8. Total Mayo score ranges from 0 to 12 (0 = no disease and 12 = most severe disease). Steroid-free remission of UC was reassessed at 12 months. Secondary clinical outcomes included adverse events. Results Among 73 patients who were randomized (mean age, 39 years; women, 33 [45%]), 69 (95%) completed the trial. The primary outcome was achieved in 12 of the 38 participants (32%) receiving pooled donor FMT compared with 3 of the 35 (9%) receiving autologous FMT (difference, 23% [95% CI, 4%-42%]; odds ratio, 5.0 [95% CI, 1.2-20.1];P = .03). Five of the 12 participants (42%) who achieved the primary end point at week 8 following donor FMT maintained remission at 12 months. There were 3 serious adverse events in the donor FMT group and 2 in the autologous FMT group. Conclusions and Relevance In this preliminary study of adults with mild to moderate UC, 1-week treatment with anaerobically prepared donor FMT compared with autologous FMT resulted in a higher likelihood of remission at 8 weeks. Further research is needed to assess longer-term maintenance of remission and safety. Trial Registration anzctr.org.au Identifier:ACTRN12613000236796

498 citations

Journal ArticleDOI
S. A. Stern1, Fran Bagenal2, Kimberly Ennico3, G. R. Gladstone1  +147 moreInstitutions (26)
16 Oct 2015-Science
TL;DR: The New Horizons encounter revealed that Pluto displays a surprisingly wide variety of geological landforms, including those resulting from glaciological and surface-atmosphere interactions as well as impact, tectonic, possible cryovolcanic, and mass-wasting processes.
Abstract: The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.

411 citations


Cited by
More filters
Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale1, Benjamin M. Neale2  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations

01 Feb 2009
TL;DR: This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale, and what might be coming next.
Abstract: Secret History: Return of the Black Death Channel 4, 7-8pm In 1348 the Black Death swept through London, killing people within days of the appearance of their first symptoms. Exactly how many died, and why, has long been a mystery. This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale. And they ask, what might be coming next?

5,234 citations

Journal ArticleDOI
Anshul Kundaje1, Wouter Meuleman1, Wouter Meuleman2, Jason Ernst3, Misha Bilenky4, Angela Yen2, Angela Yen1, Alireza Heravi-Moussavi4, Pouya Kheradpour1, Pouya Kheradpour2, Zhizhuo Zhang2, Zhizhuo Zhang1, Jianrong Wang2, Jianrong Wang1, Michael J. Ziller2, Viren Amin5, John W. Whitaker, Matthew D. Schultz6, Lucas D. Ward2, Lucas D. Ward1, Abhishek Sarkar2, Abhishek Sarkar1, Gerald Quon2, Gerald Quon1, Richard Sandstrom7, Matthew L. Eaton2, Matthew L. Eaton1, Yi-Chieh Wu2, Yi-Chieh Wu1, Andreas R. Pfenning1, Andreas R. Pfenning2, Xinchen Wang1, Xinchen Wang2, Melina Claussnitzer2, Melina Claussnitzer1, Yaping Liu2, Yaping Liu1, Cristian Coarfa5, R. Alan Harris5, Noam Shoresh2, Charles B. Epstein2, Elizabeta Gjoneska1, Elizabeta Gjoneska2, Danny Leung8, Wei Xie8, R. David Hawkins8, Ryan Lister6, Chibo Hong9, Philippe Gascard9, Andrew J. Mungall4, Richard A. Moore4, Eric Chuah4, Angela Tam4, Theresa K. Canfield7, R. Scott Hansen7, Rajinder Kaul7, Peter J. Sabo7, Mukul S. Bansal2, Mukul S. Bansal10, Mukul S. Bansal1, Annaick Carles4, Jesse R. Dixon8, Kai How Farh2, Soheil Feizi1, Soheil Feizi2, Rosa Karlic11, Ah Ram Kim1, Ah Ram Kim2, Ashwinikumar Kulkarni12, Daofeng Li13, Rebecca F. Lowdon13, Ginell Elliott13, Tim R. Mercer14, Shane Neph7, Vitor Onuchic5, Paz Polak15, Paz Polak2, Nisha Rajagopal8, Pradipta R. Ray12, Richard C Sallari1, Richard C Sallari2, Kyle Siebenthall7, Nicholas A Sinnott-Armstrong2, Nicholas A Sinnott-Armstrong1, Michael Stevens13, Robert E. Thurman7, Jie Wu16, Bo Zhang13, Xin Zhou13, Arthur E. Beaudet5, Laurie A. Boyer1, Philip L. De Jager15, Philip L. De Jager2, Peggy J. Farnham17, Susan J. Fisher9, David Haussler18, Steven J.M. Jones19, Steven J.M. Jones4, Wei Li5, Marco A. Marra4, Michael T. McManus9, Shamil R. Sunyaev15, Shamil R. Sunyaev2, James A. Thomson20, Thea D. Tlsty9, Li-Huei Tsai1, Li-Huei Tsai2, Wei Wang, Robert A. Waterland5, Michael Q. Zhang21, Lisa Helbling Chadwick22, Bradley E. Bernstein15, Bradley E. Bernstein2, Bradley E. Bernstein6, Joseph F. Costello9, Joseph R. Ecker11, Martin Hirst4, Alexander Meissner2, Aleksandar Milosavljevic5, Bing Ren8, John A. Stamatoyannopoulos7, Ting Wang13, Manolis Kellis1, Manolis Kellis2 
19 Feb 2015-Nature
TL;DR: It is shown that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

5,037 citations

Journal ArticleDOI
Kristin G. Ardlie, David S. DeLuca, Ayellet V. Segrè, Timothy J. Sullivan, Taylor Young, Ellen Gelfand, Casandra A. Trowbridge, Julian Maller, Taru Tukiainen, Monkol Lek, Lucas D. Ward, Pouya Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tõnu Esko, Wendy Winckler, Joel N. Hirschhorn, Manolis Kellis, Daniel G. MacArthur, Gad Getz, Andrey A. Shabalin, Gen Li, Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Tuuli Lappalainen, Pedro G. Ferreira, Halit Ongen, Manuel A. Rivas, Alexis Battle, Sara Mostafavi, Jean Monlong, Michael Sammeth, Marta Melé, Ferran Reverter, Jakob M. Goldmann, Daphne Koller, Roderic Guigó, Mark I. McCarthy, Emmanouil T. Dermitzakis, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Timothée Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu, Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu, Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salvatore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Michael T. Moser, Bryan Gillard, Ellen Karasik, Kimberly Ramsey, Christopher Choi, Barbara A. Foster, John Syron, Johnell Fleming, Harold Magazine, Rick Hasz, Gary Walters, Jason Bridge, Mark Miklos, Susan L. Sullivan, Laura Barker, Heather M. Traino, Maghboeba Mosavel, Laura A. Siminoff, Dana R. Valley, Daniel C. Rohrer, Scott D. Jewell, Philip A. Branton, Leslie H. Sobin, Mary Barcus, Liqun Qi, Jeffrey McLean, Pushpa Hariharan, Ki Sung Um, Shenpei Wu, David Tabor, Charles Shive, Anna M. Smith, Stephen A. Buia, Anita H. Undale, Karna Robinson, Nancy Roche, Kimberly M. Valentino, Angela Britton, Robin Burges, Debra Bradbury, Kenneth W. Hambright, John Seleski, Greg E. Korzeniewski, Kenyon Erickson, Yvonne Marcus, Jorge Tejada, Mehran Taherian, Chunrong Lu, Margaret J. Basile, Deborah C. Mash, Simona Volpi, Jeffery P. Struewing, Gary F. Temple, Joy T. Boyer, Deborah Colantuoni, Roger Little, Susan E. Koester, Latarsha J. Carithers, Helen M. Moore, Ping Guan, Carolyn C. Compton, Sherilyn Sawyer, Joanne P. Demchok, Jimmie B. Vaught, Chana A. Rabiner, Nicole C. Lockhart 
08 May 2015-Science
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Abstract: Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysi...

4,418 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations