scispace - formally typeset
Search or ask a question
Author

Janel E. Le Belle

Bio: Janel E. Le Belle is an academic researcher from Semel Institute for Neuroscience and Human Behavior. The author has contributed to research in topics: Neural stem cell & Stem cell. The author has an hindex of 8, co-authored 13 publications receiving 1363 citations. Previous affiliations of Janel E. Le Belle include University of Cambridge & University of California, Los Angeles.

Papers
More filters
Journal ArticleDOI
TL;DR: This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.

656 citations

Journal ArticleDOI
TL;DR: The results demonstrate an enhanced self-renewal capacity and G(0)-G(1) cell cycle entry and decreased growth factor dependency of Pten null neural/stem progenitor cells and loss of PTEN leads to cell physiological changes, which collectively are sufficient to increase the pool of self- renewable neural stem cells and promote their escape from the homeostatic mechanisms of proliferation control.
Abstract: Previous studies have demonstrated that a small subpopulation of brain tumor cells share key characteristics with neural stem/progenitor cells in terms of phenotype and behavior. These findings suggest that brain tumors might contain “cancer stem cells” that are critical for tumor growth. However, the molecular pathways governing such stem cell-like behavior remain largely elusive. Our previous study suggests that the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, one of the most frequently mutated genes in glioblastomas, restricts neural stem/progenitor cell proliferation in vivo. In the present study, we sought to determine the role of PTEN in long-term maintenance of stem cell-like properties, cell cycle entry and progression, and growth factor dependence and gene expression. Our results demonstrate an enhanced self-renewal capacity and G0-G1 cell cycle entry and decreased growth factor dependency of Pten null neural/stem progenitor cells. Therefore, loss of PTEN leads to cell physiological changes, which collectively are sufficient to increase the pool of self-renewing neural stem cells and promote their escape from the homeostatic mechanisms of proliferation control.

310 citations

Journal ArticleDOI
TL;DR: The data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.
Abstract: Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.

239 citations

Journal ArticleDOI
TL;DR: The evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.
Abstract: A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX)-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

90 citations

Journal ArticleDOI
01 Jan 2002-BioDrugs
TL;DR: A more fundamental understanding of brain injury and disease is required in order to circumvent local brain environmental restrictions on endogenous cell differentiation and survival and to learn how to amplify the small amount of new cells generated by the adult brain and to direct them to areas of injury or degeneration.
Abstract: The use of stem cells in cell replacement therapy for neurodegenerative diseases has received a great deal of scientific and public interest in recent years. This is due to the remarkable pace at which paradigm-changing discoveries have been made regarding the neurogenic potential of embryonic, fetal, and adult cells. Over the last decade, clinical fetal tissue transplants have demonstrated that dopaminergic neurons can survive long term and provide functional clinical benefits for patients with Parkinson’s disease. Pluripotent embryonic stem cells and multipotent neural stem cells may provide renewable sources that could replace these primary fetal grafts. Considerable advancement has been made in generating cultures with high numbers of neurons in general and of dopaminergic neurons using a varied array of techniques. However, much of this encouraging progress still remains to be tested on long-term expanded human cultures. Further problems include the low survival rate of these cells following transplantation and the tumorigenic tendencies of embryo-derived cells. However, pre-differentiation or genetic modification of stem cell cultures prior to transplantation may help lead to the generation of high numbers of cells of the desired phenotype following grafting. Boosting particular factors or substrates in the culture media may also protect grafted neurons from oxidative and metabolic stress, and provide epigenetic trophic support. Possible endogenous sources of cells for brain repair include the transdifferentiation of various types of adult cells into neurons. Despite the excitement generated by examples of this phenomenon, further work is needed in order to identify the precise instructive cues that generate neural cells from many other tissue types, and whether or not the new cells are functionally normal. Furthermore, issues such as cell homogeneity and fusion need to be addressed further before the true potential of transdifferentiation can be known. Endogenous stem cells also reside in the neurogenic zones of the adult brain (ventricle lining and hippocampus). Further elucidation of the mechanisms that stimulate cell division and migration are required in order to learn how to amplify the small amount of new cells generated by the adult brain and to direct these cells to areas of injury or degeneration. Finally, a more fundamental understanding of brain injury and disease is required in order to circumvent local brain environmental restrictions on endogenous cell differentiation and survival.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: The multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress are described.
Abstract: Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.

1,708 citations

Journal ArticleDOI
TL;DR: The sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated are discussed, with the recent observations that reduction–oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities.
Abstract: Reactive oxygen species (ROS), which were originally characterized in terms of their harmful effects on cells and invading microorganisms, are increasingly implicated in various cell fate decisions and signal transduction pathways. The mechanism involved in ROS-dependent signalling involves the reversible oxidation and reduction of specific amino acids, with crucial reactive Cys residues being the most frequent target. In this Review, we discuss the sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated. We further discuss the recent observations that reduction-oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities - from immune function to stem cell self-renewal, and from tumorigenesis to ageing.

1,515 citations

Journal ArticleDOI
TL;DR: This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology.
Abstract: Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems.

1,390 citations

Journal ArticleDOI
TL;DR: Current work showing cancer-relevant complexities in the regulation of PTEN and PI3K activity, potential novel functions for PTEN, and feedback regulation within the pathway are highlighted.
Abstract: PI3-kinase and PTEN are major positive and negative regulators, respectively, of the PI3-kinase pathway, which regulates growth, survival, and proliferation. These key signaling components are two of the most frequently mutated proteins in human cancers, resulting in unregulated activation of PI3K signaling and providing irrefutable genetic evidence of the central role of this pathway in tumorigenesis. PTEN regulates PI3K signaling by dephosphorylating the lipid signaling intermediate PIP3, but PTEN may have additional phosphatase-independent activities, as well as other functions in the nucleus. In this review, we highlight current work showing cancer-relevant complexities in the regulation of PTEN and PI3K activity, potential novel functions for PTEN, and feedback regulation within the pathway. The significance and complexity of PI3K signaling make it an important but challenging therapeutic target for cancer.

1,082 citations