scispace - formally typeset
Search or ask a question
Author

Janet Wuorenma

Bio: Janet Wuorenma is an academic researcher from Regions Hospital. The author has contributed to research in topics: Vaccination & Pneumococcal vaccine. The author has an hindex of 3, co-authored 5 publications receiving 769 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is confirmed that healthy senior citizens as well as senior citizens with underlying medical conditions are at risk for the serious complications of influenza and benefit from vaccination.
Abstract: Background: Vaccination rates for healthy senior citizens are lower than those for senior citizens with underlying medical conditions such as chronic heart or lung disease. Uncertainty about the benefits of influenza vaccination for healthy senior citizens may contribute to lower rates of utilization in this group. Objective: To clarify the benefits of influenza vaccination among low-risk senior citizens while concurrently assessing the benefits for intermediate- and high-risk senior citizens. Methods: All elderly members of a large health maintenance organization were included in each of 6 consecutive study cohorts. Subjects were grouped according to risk status: high risk (having heart or lung disease), intermediate risk (having diabetes, renal disease, stroke and/or dementia, or rheumatologic disease), and low risk. Outcomes were compared between vaccinated and unvaccinated subjects after controlling for baseline demographic and health characteristics. Results: There were more than 20 000 subjects in each of the 6 cohorts who provided 147 551 person-periods of observation. The pooled vaccination rate was 60%. There were 101 619 person-periods of observation for low-risk subjects, 15 482 for intermediate-risk, and 30 450 for highrisk subjects. Vaccination over the 6 seasons was associated with an overall reduction of 39% for pneumonia hospitalizations (P,.001), a 32% decrease in hospitalizations for all respiratory conditions (P,.001), and a 27% decrease in hospitalizations for congestive heart failure (P,.001). Immunization was also associated with a 50% reduction in all-cause mortality (P,.001). Within the risk subgroups, vaccine effectiveness was 29%, 32%, and 49% for high-, intermediate-, and low-risk senior citizens for reducing hospitalizations for pneumonia and influenza (for high and low risk, P#.002; for intermediate risk, P = .11). Effectiveness was 19%, 39%, and 33% (for each, P#.008), respectively, for reducing hospitalizations for all respiratory conditions and 49%, 64%, and 55% for reducing deaths from all causes (for each, P,.001). Vaccination was also associated with direct medical care cost savings of $73 per individual vaccinated for all subjects combined (P = .002). Estimates of cost savings within each risk group suggest that vaccination would be cost saving for each subgroup (range of cost savings of $171 per individual vaccinated for high risk to $7 for low risk), although within the subgroups these findings did not reach statistical significance (for each, P$.05). Conclusions: This study confirms that healthy senior citizens as well as senior citizens with underlying medical conditions are at risk for the serious complications of influenza and benefit from vaccination. All individuals 65 years or older should be immunized with this vaccine. Arch Intern Med. 1998;158:1769-1776

470 citations

Journal ArticleDOI
TL;DR: Pneumococcal vaccination of elderly persons with chronic lung disease was associated with fewer hospitalizations for pneumonia, fewer deaths, and direct medical care cost savings.
Abstract: Background More than 50% of the elderly population has not received pneumococcal vaccination. Uncertainty regarding the benefits of immunization, particularly for noninvasive disease, may contribute to the underuse of pneumococcal vaccine. Objective To assess the health and economic benefits associated with pneumococcal vaccination. Methods We conducted a 2-year retrospective cohort study among all elderly members of a staff-model managed care organization who had a baseline diagnosis of chronic lung disease. The study outcomes were assessed over 2 years, from November 15, 1993, through November 14, 1995, and included hospitalizations for pneumonia and influenza, death, and hospitalization costs. Using administrative data, we compared these outcomes for vaccinated and unvaccinated subjects using multivariate models to control for subjects' baseline demographic and health characteristics. The additive benefits of combined influenza and pneumococcal vaccination were also assessed for the 2 influenza seasons included in the study. Results There were 1898 subjects. Pneumococcal vaccination was associated with significantly lower risks for pneumonia hospitalizations (adjusted risk ratio [RR], 0.57; 95% confidence interval [CI], 0.38-0.84;P=.005) and for death (adjusted RR, 0.71; 95% CI, 0.56-0.91;P=.008). For the control outcome of all nonpneumonia hospitalizations, rates did not differ significantly between the 2 groups (adjusted RR, 0.91; 95% CI, 0.77-1.07;P=.24). During the influenza seasons included in the study, the benefits of pneumococcal and influenza vaccinations were additive, with an adjusted RR of 0.28 (95% CI, 0.14-0.58;P Conclusions Pneumococcal vaccination of elderly persons with chronic lung disease was associated with fewer hospitalizations for pneumonia, fewer deaths, and direct medical care cost savings.

305 citations

Journal ArticleDOI
TL;DR: A 15-site health maintenance organization (HMO) implemented a mass influenza vaccination program to heighten awareness of the vaccine and immunize more "at-risk" members.
Abstract: A 15-site health maintenance organization (HMO) implemented a mass influenza vaccination program to heighten awareness of the vaccine and immunize more "at-risk" members. Successful interventions conducted over a two-year period included: a direct mail leaflet, pharmacy bag reminders, posters at each medical center, articles in the HMO member newsletter, staff education, standing orders for nursing and, most important, the availability and access to vaccination through walk-in clinics. Immunization rates were examined for patients considered "at-risk." In addition, assessments were made to determine program effectiveness and patient and staff satisfaction.

6 citations


Cited by
More filters
Journal Article
TL;DR: This report updates the 2000 recommendations by the Advisory Committee on Immunization Practices on the use of influenza vaccine and antiviral agents with new or updated information regarding the cost-effectiveness of influenza vaccination and the 2001-2002 trivalent vaccine virus strains.
Abstract: This report updates the 2002 recommendations by the Advisory Committee on Immunization Practices (ACIP) on the use of influenza vaccine and antiviral agents (CDC. Prevention and Control of Influenza: Recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2002;51 [No. RR-3]:1-31). The 2003 recommendations include new or updated information regarding 1) the timing of influenza vaccination by age and risk group; 2) influenza vaccine for children aged 6-23 months; 3) the 2003-2004 trivalent inactivated vaccine virus strains: A/Moscow/10/99 (H3N2)-like, A/New Caledonia/20/99 (H1N1)-like, and B/Hong Kong/330/2001-like antigens (for the A/Moscow/10/99 [H3N2]-like antigen, manufacturers will use the antigenically equivalent A/Panama/2007/99 [H3N2] virus, and for the B/Hong Kong/330/2001-like antigen, manufacturers will use either B/Hong Kong/330/2001 or the antigenically equivalent B/Hong Kong/1434/2002); 4) availability of certain influenza vaccine doses with reduced thimerosal content, including single 0.25 mL-dose syringes; and 5) manufacturers of influenza vaccine for the U.S. market. Although the optimal time to vaccinate against influenza is October and November, vaccination in December and later continues to be strongly recommended A link to this report and other information regarding influenza can be accessed at http://www.cdc.gov/ncidod/diseases/flu/fluvirus.htm.

5,334 citations

Journal ArticleDOI
08 Jan 2003-JAMA
TL;DR: Mortality associated with both influenza and RSV circulation disproportionately affects elderly persons, and influenza deaths have increased substantially in the last 2 decades, in part because of aging of the population, highlighting the need for better prevention measures, including more effective vaccines and vaccination programs for elderly persons.
Abstract: Context Influenza and respiratory syncytial virus (RSV) cause substantial morbidity and mortality. Statistical methods used to estimate deaths in the United States attributable to influenza have not accounted for RSV circulation. Objective To develop a statistical model using national mortality and viral surveillance data to estimate annual influenza- and RSV-associated deaths in the United States, by age group, virus, and influenza type and subtype. Design, Setting, and Population Age-specific Poisson regression models using national viral surveillance data for the 1976-1977 through 1998-1999 seasons were used to estimate influenza-associated deaths. Influenza- and RSV-associated deaths were simultaneously estimated for the 1990-1991 through 1998-1999 seasons. Main Outcome Measures Attributable deaths for 3 categories: underlying pneumonia and influenza, underlying respiratory and circulatory, and all causes. Results Annual estimates of influenza-associated deaths increased significantly between the 1976-1977 and 1998-1999 seasons for all 3 death categories (P Conclusions Mortality associated with both influenza and RSV circulation disproportionately affects elderly persons. Influenza deaths have increased substantially in the last 2 decades, in part because of aging of the population, underscoring the need for better prevention measures, including more effective vaccines and vaccination programs for elderly persons.

3,572 citations

Journal ArticleDOI
TL;DR: The inability of case-mix adjustment methods to compensate for selection bias and the inability to identify non- randomised studies that are free of selection bias indicate that non-randomised studies should only be undertaken when RCTs are infeasible or unethical.
Abstract: OBJECTIVES: To consider methods and related evidence for evaluating bias in non-randomised intervention studies. DATA SOURCES: Systematic reviews and methodological papers were identified from a search of electronic databases; handsearches of key medical journals and contact with experts working in the field. New empirical studies were conducted using data from two large randomised clinical trials. METHODS: Three systematic reviews and new empirical investigations were conducted. The reviews considered, in regard to non-randomised studies, (1) the existing evidence of bias, (2) the content of quality assessment tools, (3) the ways that study quality has been assessed and addressed. (4) The empirical investigations were conducted generating non-randomised studies from two large, multicentre randomised controlled trials (RCTs) and selectively resampling trial participants according to allocated treatment, centre and period. RESULTS: In the systematic reviews, eight studies compared results of randomised and non-randomised studies across multiple interventions using meta-epidemiological techniques. A total of 194 tools were identified that could be or had been used to assess non-randomised studies. Sixty tools covered at least five of six pre-specified internal validity domains. Fourteen tools covered three of four core items of particular importance for non-randomised studies. Six tools were thought suitable for use in systematic reviews. Of 511 systematic reviews that included non-randomised studies, only 169 (33%) assessed study quality. Sixty-nine reviews investigated the impact of quality on study results in a quantitative manner. The new empirical studies estimated the bias associated with non-random allocation and found that the bias could lead to consistent over- or underestimations of treatment effects, also the bias increased variation in results for both historical and concurrent controls, owing to haphazard differences in case-mix between groups. The biases were large enough to lead studies falsely to conclude significant findings of benefit or harm. Four strategies for case-mix adjustment were evaluated: none adequately adjusted for bias in historically and concurrently controlled studies. Logistic regression on average increased bias. Propensity score methods performed better, but were not satisfactory in most situations. Detailed investigation revealed that adequate adjustment can only be achieved in the unrealistic situation when selection depends on a single factor. CONCLUSIONS: Results of non-randomised studies sometimes, but not always, differ from results of randomised studies of the same intervention. Non-randomised studies may still give seriously misleading results when treated and control groups appear similar in key prognostic factors. Standard methods of case-mix adjustment do not guarantee removal of bias. Residual confounding may be high even when good prognostic data are available, and in some situations adjusted results may appear more biased than unadjusted results. Although many quality assessment tools exist and have been used for appraising non-randomised studies, most omit key quality domains. Healthcare policies based upon non-randomised studies or systematic reviews of non-randomised studies may need re-evaluation if the uncertainty in the true evidence base was not fully appreciated when policies were made. The inability of case-mix adjustment methods to compensate for selection bias and our inability to identify non-randomised studies that are free of selection bias indicate that non-randomised studies should only be undertaken when RCTs are infeasible or unethical. Recommendations for further research include: applying the resampling methodology in other clinical areas to ascertain whether the biases described are typical; developing or refining existing quality assessment tools for non-randomised studies; investigating how quality assessments of non-randomised studies can be incorporated into reviews and the implications of individual quality features for interpretation of a review's results; examination of the reasons for the apparent failure of case-mix adjustment methods; and further evaluation of the role of the propensity score.

2,651 citations

Journal ArticleDOI
15 Sep 2004-JAMA
TL;DR: Significant numbers of influenza-associated hospitalizations in the United States occur among the elderly, and the numbers of these hospitalizations have increased substantially over the last 2 decades due in part to the aging of the population.
Abstract: ContextRespiratory viral infections are responsible for a large number of hospitalizations in the United States each year.ObjectiveTo estimate annual influenza-associated hospitalizations in the United States by hospital discharge category, discharge type, and age group.Design, Setting, and ParticipantsNational Hospital Discharge Survey (NHDS) data and World Health Organization Collaborating Laboratories influenza surveillance data were used to estimate annual average numbers of hospitalizations associated with the circulation of influenza viruses from the 1979-1980 through the 2000-2001 seasons in the United States using age-specific Poisson regression models.Main Outcome MeasuresWe estimated influenza-associated hospitalizations for primary and any listed pneumonia and influenza and respiratory and circulatory hospitalizations.ResultsAnnual averages of 94 735 (range, 18 908-193 561) primary and 133 900 (range, 30 757-271 529) any listed pneumonia and influenza hospitalizations were associated with influenza virus infections. Annual averages of 226 054 (range, 54 523-430 960) primary and 294 128 (range, 86 494-544 909) any listed respiratory and circulatory hospitalizations were associated with influenza virus infections. Persons 85 years or older had the highest rates of influenza-associated primary respiratory and circulatory hospitalizations (1194.9 per 100 000 persons). Children younger than 5 years (107.9 primary respiratory and circulatory hospitalizations per 100 000 persons) had rates similar to persons aged 50 through 64 years. Estimated rates of influenza-associated hospitalizations were highest during seasons in which A(H3N2) viruses predominated, followed by B and A(H1N1) seasons. After adjusting for the length of each influenza season, influenza-associated primary pneumonia and influenza hospitalizations increased over time among the elderly. There were no significant increases in influenza-associated primary respiratory and circulatory hospitalizations after adjusting for the length of the influenza season.ConclusionsSignificant numbers of influenza-associated hospitalizations in the United States occur among the elderly, and the numbers of these hospitalizations have increased substantially over the last 2 decades due in part to the aging of the population. Children younger than 5 years had rates of influenza-associated hospitalizations similar to those among individuals aged 50 through 64 years. These findings highlight the need for improved influenza prevention efforts for both young and older US residents.

2,130 citations

Journal Article
TL;DR: This report updates the 2008 recommendations by CDC's Advisory Committee on Immunization Practices regarding the use of influenza vaccine for the prevention and control of seasonal influenza and includes a summary of safety data for U.S. licensed influenza vaccines.
Abstract: This report updates the 2009 recommendations by CDC's Advisory Committee on Immunization Practices (ACIP) regarding the use of influenza vaccine for the prevention and control of influenza (CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2009;58[No. RR-8] and CDC. Use of influenza A (H1N1) 2009 monovalent vaccine---recommendations of the Advisory Committee on Immunization Practices [ACIP], 2009. MMWR 2009;58:[No. RR-10]). The 2010 influenza recommendations include new and updated information. Highlights of the 2010 recommendations include 1) a recommendation that annual vaccination be administered to all persons aged >or=6 months for the 2010-11 influenza season; 2) a recommendation that children aged 6 months--8 years whose vaccination status is unknown or who have never received seasonal influenza vaccine before (or who received seasonal vaccine for the first time in 2009-10 but received only 1 dose in their first year of vaccination) as well as children who did not receive at least 1 dose of an influenza A (H1N1) 2009 monovalent vaccine regardless of previous influenza vaccine history should receive 2 doses of a 2010-11 seasonal influenza vaccine (minimum interval: 4 weeks) during the 2010--11 season; 3) a recommendation that vaccines containing the 2010-11 trivalent vaccine virus strains A/California/7/2009 (H1N1)-like (the same strain as was used for 2009 H1N1 monovalent vaccines), A/Perth/16/2009 (H3N2)-like, and B/Brisbane/60/2008-like antigens be used; 4) information about Fluzone High-Dose, a newly approved vaccine for persons aged >or=65 years; and 5) information about other standard-dose newly approved influenza vaccines and previously approved vaccines with expanded age indications. Vaccination efforts should begin as soon as the 2010-11 seasonal influenza vaccine is available and continue through the influenza season. These recommendations also include a summary of safety data for U.S.-licensed influenza vaccines. These recommendations and other information are available at CDC's influenza website (http://www.cdc.gov/flu); any updates or supplements that might be required during the 2010-11 influenza season also will be available at this website. Recommendations for influenza diagnosis and antiviral use will be published before the start of the 2010-11 influenza season. Vaccination and health-care providers should be alert to announcements of recommendation updates and should check the CDC influenza website periodically for additional information.

1,659 citations