scispace - formally typeset
Search or ask a question
Author

Jang Kyo Kim

Bio: Jang Kyo Kim is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Graphene & Epoxy. The author has an hindex of 94, co-authored 501 publications receiving 31692 citations. Previous affiliations of Jang Kyo Kim include Monash University, Clayton campus & Henkel.
Topics: Graphene, Epoxy, Carbon nanotube, Nanocomposite, Anode


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the current understanding of carbon nanotubes and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT-based functionalization on the properties of polymers.
Abstract: Carbon nanotubes (CNTs) hold the promise of delivering exceptional mechanical properties and multi-functional characteristics. Ever-increasing interest in applying CNTs in many different fields has led to continued efforts to develop dispersion and functionalization techniques. To employ CNTs as effective reinforcement in polymer nanocomposites, proper dispersion and appropriate interfacial adhesion between the CNTs and polymer matrix have to be guaranteed. This paper reviews the current understanding of CNTs and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT dispersion and functionalization on the properties of CNT/polymer nanocomposites. The fabrication techniques and potential applications of CNT/polymer nanocomposites are also highlighted.

2,849 citations

Journal ArticleDOI
TL;DR: Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB.
Abstract: Nanocomposites that contain reinforcements with preferred orientation have attracted significant attention because of their promising applications in a wide range of multifunctional fields. Many efforts have recently been focused on developing facile methods for preparing aligned graphene sheets in solvents and polymers because of their fascinating properties including liquid crystallinity and highly anisotropic characteristics. Self-aligned in situ reduced graphene oxide (rGO)/polymer nanocomposites are prepared using an all aqueous casting method. A remarkably low percolation threshold of 0.12 vol% is achieved in the rGO/epoxy system owing to the uniformly dispersed, monolayer graphene sheets with extremely high aspect ratios (>30000). The self-alignment into a layered structure at above a critical filler content induces a unique anisotropy in electrical and mechanical properties due to the preferential formation of conductive and reinforcing networks along the alignment direction. Accompanied by the anisotropic electrical conductivities are exceptionally high dielectric constants of over 14000 with 3 wt% of rGO at 1 kHz due to the charge accumulation at the highly-aligned conductive filler/insulating polymer interface according to the Maxwell-Wagner-Sillars polarization principle. The highly dielectric rGO/epoxy nanocomposites with the engineered structure and properties present high performance electromagnetic interference shielding with a remarkable shilding efficiency of 38 dB.

1,011 citations

Journal ArticleDOI
TL;DR: In this article, the percolation threshold of carbon nanotube (CNT)-reinforced polymer nanocomposites is investigated based on an interparticle distance concept.
Abstract: Critical factors that determine the percolation threshold of carbon nanotube (CNT)-reinforced polymer nanocomposites are studied. An improved analytical model is developed based on an interparticle distance concept. Two dispersion parameters are introduced in the model to correctly reflect the different dispersion states of CNTs in the matrix—entangled bundles and well-dispersed individual CNTs. CNT–epoxy nanocomposites with different dispersion states are fabricated from the same constituent materials by employing different processing conditions. The corresponding percolation thresholds of the nanocomposites vary over a wide range, from 0.1 to greater than 1.0 wt %, and these variations are explained in terms of dispersion parameters and aspect ratios of CNTs. Important factors that control the percolation threshold of nanocomposites are identified based on the comparison between modeling data and experimental results.

958 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of silane functionalization of multi-wall carbon nanotubes (CNTs) on properties of CNT/epoxy nanocomposites are investigated.

576 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized various design strategies for producing random, aligned and core/shell structured carbon nanofibers, and elucidated the influences of polymer precursors, processing parameters, conductive additives and catalysts on functional, morphological and structural characteristics of CNFs.

548 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Abstract: Materials with good flexibility and high conductivity that can provide electromagnetic interference (EMI) shielding with minimal thickness are highly desirable, especially if they can be easily processed into films. Two-dimensional metal carbides and nitrides, known as MXenes, combine metallic conductivity and hydrophilic surfaces. Here, we demonstrate the potential of several MXenes and their polymer composites for EMI shielding. A 45-micrometer-thick Ti3C2Tx film exhibited EMI shielding effectiveness of 92 decibels (>50 decibels for a 2.5-micrometer film), which is the highest among synthetic materials of comparable thickness produced to date. This performance originates from the excellent electrical conductivity of Ti3C2Tx films (4600 Siemens per centimeter) and multiple internal reflections from Ti3C2Tx flakes in free-standing films. The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.

3,251 citations

Journal ArticleDOI
TL;DR: In this paper, the structure, preparation and properties of polymer/graphene nanocomposites are discussed in general along with detailed examples drawn from the scientific literature, and the percolation threshold can be achieved at a very lower filler loading.

2,999 citations