scispace - formally typeset
Search or ask a question
Author

장진우

Bio: 장진우 is an academic researcher. The author has an hindex of 2, co-authored 6 publications receiving 195 citations.


Cited by
More filters
Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations

Journal ArticleDOI
TL;DR: In this article, the authors rigorously prove the device-independent security of an entanglement-based protocol building on Ekert's original proposal for quantum key distribution, using techniques from the classical theory of pseudo-randomness to achieve a new quantitative understanding of the nonlocal nature of quantum correlations.
Abstract: Quantum cryptography promises levels of security that are impossible to attain in a classical world. Can this security be guaranteed to classical users of a quantum protocol, who may not even trust the quantum devices used to implement the protocol?This central question dates back to the early 1990s when the challenge of achieving Device-Independent Quantum Key Distribution (DIQKD) was first formulated. We answer the challenge by rigorously proving the device-independent security of an entanglement-based protocol building on Ekert's original proposal for quantum key distribution. The proof of security builds on techniques from the classical theory of pseudo-randomness to achieve a new quantitative understanding of the non-local nature of quantum correlations.

181 citations

Posted Content
TL;DR: In this paper, the authors performed a systematic comparison of 7 well-known clustering methods available in the R language and found that the spectral approach usually outperformed the other clustering algorithms.
Abstract: Many real-world systems can be studied in terms of pattern recognition tasks, so that proper use (and understanding) of machine learning methods in practical applications becomes essential. While a myriad of classification methods have been proposed, there is no consensus on which methods are more suitable for a given dataset. As a consequence, it is important to comprehensively compare methods in many possible scenarios. In this context, we performed a systematic comparison of 7 well-known clustering methods available in the R language. In order to account for the many possible variations of data, we considered artificial datasets with several tunable properties (number of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of the clustering methods with regard to their parameters configuration. The results revealed that, when considering the default configurations of the adopted methods, the spectral approach usually outperformed the other clustering algorithms. We also found that the default configuration of the adopted implementations was not accurate. In these cases, a simple approach based on random selection of parameters values proved to be a good alternative to improve the performance. All in all, the reported approach provides subsidies guiding the choice of clustering algorithms.

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors theoretically construct a general formalism of multipole description by considering four independent types of multipoles: electric, magnetic, electric toroidal and magnetic toroidal.
Abstract: The concept of multipoles has attracted growing interest in condensed matter physics, since it is widely utilized to characterize electronic states microscopically in a unified manner. Here, the authors theoretically construct a general formalism of multipole description by considering four independent types of multipoles: electric, magnetic, electric toroidal, and magnetic toroidal. The authors systematically derive microscopic expressions of multipoles in both real and momentum spaces, and clarify how multipoles determine the structure of electronic band and linear response tensors with or without space-time parity conversion. The complete tables to summarize the active multipoles under 32 crystallographic point groups will give a comprehensive and systematic understanding of a wide variety of physical phenomena at the microscopic level.

123 citations

Journal ArticleDOI
TL;DR: It is demonstrated theoretically the formation of a novel form of Kuznetsov-Ma soliton in a microfabricated optomechanical array, where both photonic and phononic evolutionary dynamics exhibit periodic structure and coherent localized behavior enabled by radiation-pressure coupling of optical fields and mechanical oscillations.
Abstract: A Kuznetsov-Ma soliton that exhibits an unusual pulsating dynamics has attracted particular attention in hydrodynamics and plasma physics in the context of understanding nonlinear coherent phenomena. Here, we demonstrate theoretically the formation of a novel form of Kuznetsov-Ma soliton in a microfabricated optomechanical array, where both photonic and phononic evolutionary dynamics exhibit periodic structure and coherent localized behavior enabled by radiation-pressure coupling of optical fields and mechanical oscillations, which is a manifestation of the unique property of optomechanical systems. Numerical calculations of the optomechanical dynamics show an excellent agreement with this theory. In addition to providing insight into optomechanical nonlinearity, optomechanical Kuznetsov-Ma soliton dynamics fundamentally broadens the regime of cavity optomechanics and may find applications in on-chip manipulation of light propagation.

82 citations